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1. Introduction 

The subset polynomial regression model is a polynomial regression in which some regression 
coefficients have a zero value. The advantage of this model is the user can select a regression model from 
all possible subsets of the polynomial regression model. The model has been studied by several 
researchers. Jekabson and Lavendels [1] compared the formation of polynomial regression models using 
the subset selection approach and the adaptive basis function construction approach. In the subset 
selection approach, the least squares method is used to approximate the solution. Overall the adaptive 
basis function construction approach was found to be superior to the subset selection approach. O'Neill 
et al. [2] used the method of a subset polynomial neural network to predict breast cancer. This method 
gives better results than the mammography method. Xie et al. [3] used the polynomial regression in 
medical image segmentation. Suparman [4] proposed a subset polynomial regression model using error 
which has an exponential distribution. The Markov Chain Monte Carlo (MCMC) reversible jump 
method is used to estimate the parameters of the subset polynomial regression model. The subset 
polynomial regression model often assumes that the error has a normal distribution or exponential 
distribution. However, in everyday life it is often found that the error distribution is unknown. 

The Bootstrap method developed by Efroan and Tibshirani [5] is widely used in statistics and can be 
very useful in the context of regression [6]. A principle of the Bootstrap method is to try to get a good 
estimate based on minimal resources. In the case of statistical inference, minimal resources can be 
interpreted as small data, data that deviate from certain assumptions, and data that have no assumption 
about the distribution. Warton [6] used the bootstrap algorithm to estimate the parameters of a 
regression model. The Bootstrap method is applied in ecology. Garcia-Soidan et al. [7] used the 
Bootstrap method for spatial data. The estimator of the multivariate distribution function is used as the 
basis for the implementation of the Bootstrap method. Yazici et al. [8] used the Bootstrap method to 
obtain the empirical distribution of the parameters in the nonparametric regression of Conic Multivariate 
Adaptive Regression Splines (CMARS). The results showed that the bootstrap method provides an 
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accurate parameter estimate. Beda et al. [9] used the Bootstrap method to calculate the confidence limits 
for spectral indices of heart-rate variability (HRV). Spectral indices are modeled using an autoregressive 
model. Hall and Maiti [10] used the Bootstrap method to construct a mean error estimator and to 
calculate the predicted region. The Bootstrap technique can be applied to non-normal models. Colugnati 
et al. [11] used the Bootstrap method to obtain interval estimation for percentiles on the diagnosis of 
obesity and overweight in children and adolescents. Kant et al. [12] used a bootstrap-based neural 
network model for flood estimates. The results show that the bootstrap-based neural network model is 
a stable model. Ren et al. [13] used the Bootstrap method to determine the confidence interval for 
multihop distances. The use of Bootstrap method can eliminate the risk of small sample size and 
unknown distribution. Kleiner et al. [14] used Bootstrap for massive data. Jacek et al. [15] used the 
Bootstrap approach to estimate the uncertainty of surface response models. Chen et al. [16] used a 
bootstrap analysis to measure individual and regional differences in relative concentrations of gamma-
aminobutyric acid in the human brain. Dongping [17] used the Bootstrap method to determine 
predictive point and prediction intervals to reduce the risk of misleading decisions in maintenance in 
prognostic devices. Liang et al. [18] used the Bootstrap Metropolis-Hasting algorithm for model 
selection and optimization. Mei et al. [19] used the Residual-Based Bootstrap Test to detect the constant 
coefficients in the Weighted Geographic Regression model. Mikshowsky et al. [20] used bootstrap 
aggregation sampling to improve the reliability of genomic predictions for Jersey sires. Olaniran et al. 
[21] used Bootstrap techniques to improve the selection and classification of Bayesian features. Zhen 
[22] used Bootstrap resampling to detect wideband signal numbers. Boubaka et al. [23] used the 
Bootstrap method to identify parameters for the dependent data. In this paper, the Bootstrap method 
will be used to determine the parameter estimator in the polynomial subset regression. This paper aims 
to estimate the parameters of the subset polynomial regression model using the Bootstrap method. 

2. Method 

The method used to estimate the parameters of the subset polynomial regression model is as follows: 

2.1. The Least Squares Estimate 

Suppose that  (yt , xt) is the pairing of the dependent variable and the independent variable, as well 
as zt is error and t = 1, 2, ....n where n is the number of observation. Let kmax be a maximum order. The 
subset polynomial regression model which has an order k (k = 0, 1, ...., kmax) can be written as:  

𝑦𝑡 = 𝛽0 + 𝛽𝑛1
𝑋𝑡

𝑛1 + 𝛽𝑛2
𝑋𝑡

𝑛2 + ⋯+ 𝛽𝑛𝑘
𝑋𝑡

𝑛𝑘 + 𝑍𝑡  

Here {n1, n2, ..., nk} is the subset of {1, 2, ..., k} and  𝛽 = (𝛽0,  𝛽𝑛1
, … , 𝛽𝑛𝑘

)′is the coefficient vector.  

The tz  (t = 1, 2, 3, ..., n ) is an error with mean 0 and variance 𝜎2 that is identical but its distribution 

is unknown.  Based on the data (yt, xt) for t = 1, 2, ..., n, the parameters  𝛽, 𝜎2 and the polynomial 
regression subset models are estimated. 

Equation (1) is a short form for a set of the following n simultaneous equations: 

𝑦1 = 𝛽0 + 𝛽𝑛1
𝑋1

𝑛1 + 𝛽𝑛2
𝑋1

𝑛2 + ⋯+ 𝛽𝑛𝑘
𝑋1

𝑛𝑘 + 𝑍1  

𝑦2 = 𝛽0 + 𝛽𝑛1
𝑋2

𝑛1 + 𝛽𝑛2
𝑋2

𝑛2 + ⋯ + 𝛽𝑛𝑘
𝑋2

𝑛𝑘 + 𝑍2  

 ...  

𝑦𝑛 = 𝛽0 + 𝛽𝑛1
𝑋𝑛

𝑛1 + 𝛽𝑛2
𝑋𝑛

𝑛2 + ⋯+ 𝛽𝑛𝑘
𝑋𝑛

𝑛𝑘 + 𝑍𝑛  

In a matrix form, equation (2) can be written as: 

𝑌 = 𝑋𝛽 + 𝑍  
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where 

𝑌 = [

𝑌1

𝑌2
⋯
𝑌𝑛

] , 𝑋 =

[
 
 
 1 𝑋1

𝑛1

1 𝑋2
𝑛1

⋯
1

⋯
𝑋𝑛

𝑛1

 

𝑋1
𝑛2 ⋯ 𝑋1

𝑛𝑘

𝑋2
𝑛2 ⋯ 𝑋2

𝑛𝑘

⋯
𝑋𝑛

𝑛2
⋯

⋯
𝑋𝑛

𝑛𝑘]
 
 
 

, 𝛽 = [

𝛽0

𝛽𝑛1
⋯
𝛽𝑛𝑘

] , 𝑎𝑛𝑑 𝑍 = [

𝑍1

𝑍2
⋯
𝑍𝑛

]. 

To obtain the least squares estimate of  β, first write the sample subset polynomial regression: 

𝑦𝑡 = 𝛽̂0 + 𝛽̂𝑛1
𝑋𝑡

𝑛1 + 𝛽̂𝑛2
𝑋𝑡

𝑛2 + ⋯+ 𝛽̂𝑛𝑘
𝑋𝑡

𝑛𝑘 + 𝑍𝑡  

for t = 1, 2, 3, ..., n, which can be written briefly in matrix notation as:  

𝑌 = 𝑋𝛽̂ + 𝑒  

where 

𝑌 = [

𝑌1

𝑌2
⋯
𝑌𝑛

] , 𝑋 =

[
 
 
 1 𝑋1

𝑛1

1 𝑋2
𝑛1

⋯
1

⋯
𝑋𝑛

𝑛1

 

𝑋1
𝑛2 ⋯ 𝑋1

𝑛𝑘

𝑋2
𝑛2 ⋯ 𝑋2

𝑛𝑘

⋯
𝑋𝑛

𝑛2
⋯

⋯
𝑋𝑛

𝑛𝑘]
 
 
 

, 𝛽̂ =

[
 
 
 
𝛽̂0

𝛽̂𝑛1
⋯
𝛽̂𝑛𝑘]

 
 
 

, 𝑎𝑛𝑑 𝑒 = [

𝑒1

𝑒2
⋯
𝑒𝑛

]. 

Here, 𝛽̂ is a column vector of the least squares estimator of the subset polynomial regression coefficient 
and e is a column vector of the residual n. According to the least squares method, the least squares 
estimator is obtained by minimizing (6). 

∑ 𝑒𝑡
2𝑛

𝑡=1 = ∑ (𝑦𝑡 − 𝛽̂0 − 𝛽̂𝑛1
𝑋𝑡

𝑛1 − ⋯ − 𝛽̂𝑛𝑘
𝑋𝑡

𝑛𝑘)
2𝑛

𝑡=1   

This is achieved by partially differentiating (6) to 𝛽0,  𝛽𝑛1
, … , 𝛽𝑛𝑘

 and the result obtained is equal to 

zero. This process produces k + 1 simultaneous equations in k + 1 unknown variables.  

𝑛𝛽̂0 + 𝛽̂𝑛1
∑ 𝑋𝑡

𝑛1𝑛
𝑡=1 + 𝛽̂𝑛2

∑ 𝑋𝑡
𝑛2𝑛

𝑡=1 + ⋯ + 𝛽̂𝑛𝑘
∑ 𝑋𝑡

𝑛𝑘𝑛
𝑡=1 = ∑ 𝑦𝑡

𝑛
𝑡=1  

𝛽̂0 ∑ 𝑋𝑡
𝑛1𝑛

𝑡=1 + 𝛽̂𝑛1
∑ 𝑋𝑡

2𝑛1𝑛
𝑡=1 + 𝛽̂𝑛2

∑ 𝑋𝑡
𝑛1𝑋𝑡

𝑛2𝑛
𝑡=1 + ⋯+ 𝛽̂𝑛𝑘

∑ 𝑋𝑡
𝑛1𝑋𝑡

𝑛𝑘𝑛
𝑡=1 = ∑ 𝑋𝑡

𝑛1𝑦𝑡
𝑛
𝑡=1  

𝛽̂0 ∑ 𝑋𝑡
𝑛2𝑛

𝑡=1 + 𝛽̂𝑛1
∑ 𝑋𝑡

𝑛2𝑋𝑡
𝑛1𝑛

𝑡=1 + 𝛽̂𝑛2
∑ 𝑋𝑡

2𝑛2𝑛
𝑡=1 + ⋯+ 𝛽̂𝑛𝑘

∑ 𝑋𝑡
𝑛2𝑋𝑡

𝑛𝑘𝑛
𝑡=1 = ∑ 𝑋𝑡

𝑛2𝑦𝑡
𝑛
𝑡=1  

  

𝛽̂0 ∑ 𝑋𝑡
𝑛𝑘𝑛

𝑡=1 + 𝛽̂𝑛1
∑ 𝑋𝑡

𝑛𝑘𝑋𝑡
𝑛1𝑛

𝑡=1 + 𝛽̂𝑛2
∑ 𝑋𝑡

𝑛𝑘𝑋𝑡
𝑛2𝑛

𝑡=1 + ⋯ + 𝛽̂𝑛𝑘
∑ 𝑋𝑡

2𝑛𝑘𝑛
𝑡=1 = ∑ 𝑋𝑡

𝑛𝑘𝑦𝑡
𝑛
𝑡=1  

In the matrix form, equation (7) can be presented as:  

(𝑋′𝑋)𝛽̂ = 𝑋′𝑌  

If the inverse of (X'X) exists, say (X'X)-1, then by multiplying in both sides of (8) by this inverse, the 
result is as follows:  

(𝑋′𝑋)−1(𝑋′𝑋)𝛽̂ = (𝑋′𝑋)−1𝑋′𝑌  

or 

𝛽̂ = (𝑋′𝑋)−1𝑋′𝑌  

The least squares estimator for 𝛽 = (𝛽0, 𝛽𝑛1
, … , 𝛽𝑛𝑘

)′ is  

𝛽̂ = (𝑋𝑡𝑋)−1𝑋t𝑌  
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and the least squares estimator for 𝜎2 is: 

𝜎̂2 =
𝑌′𝑌−𝛽̂′𝑋′𝑌

𝑛−𝑘−1
  

2.2. Statistical Criteria 

The Ck statistical criteria [5] is used to select the best polynomial subset regression model. The best 
subset polynomial regression model selected is a subset polynomial regression model that has the smallest 
Ck value. The Ck value is calculated using the following equation: 

𝐶𝑘 =
∑ (𝑦𝑡 − 𝛽̂0 − 𝛽̂𝑛1𝑋𝑡

𝑛1− ⋯− 𝛽̂𝑛𝑘
𝑋𝑡

𝑛𝑘)2𝑛
𝑡=1

𝑛
− 

2𝑘𝜎̂2

𝑛
  

2.3. Bootstrap Method 

The Bootstrap method developed in [5] is a simulation method based on data that can be applied to 
statistical inference problems. A basic principle of bootstrapping is resampling i.e. resampling / artificial 
observation of z1, z2, ... ,  zn that already exists.  

F̂ is an empirical distribution taken with probability 1/n at each observed value z1, z2, ...,  zn. Let B 
be a number of the resampling. The Bootstrap sample is defined as a random sample of size n composed 

of F̂, e.g. the bth Bootstrap sample (b = 1, 2, ... , B) is denoted by b

n

b

2

b

1 z,...,z,z . The Bootstrap sample 
b

n

b

2

b

1 z,...,z,z  is a random sample of size n taken with the return of population z1, z2, ...,  zn. Members 

of the bootstrap sample b

n

b

2

b

1 z,...,z,z  comprising the original samples z1, z2, ...,  zn, appear once, appear 

twice, appear more than twice, or do not appear in the original sampling process. The computational 
steps to determine the 100(1-α)% confidence interval for 𝑦̂𝑡+1 are as follows:  

1) Calculate 𝛽̂ and 𝜎̂2 from the original data. 

2)  Calculate 𝑧̂𝑡 using the equation 

𝑧̂𝑡 = 𝑦̂𝑡 − 𝛽̂0 − 𝛽̂𝑛1
𝑋𝑡

𝑛1 − ⋯ − 𝛽̂𝑛𝑘
𝑋𝑡

𝑛𝑘  

3) For b = 1, 2, ...., B: 

a. Resampling 𝑧̂𝑡
(𝑏)

. 

b. Compute 𝑦̂𝑡
(𝑏)

 with the equation 

𝑦̂𝑡
(𝑏)

= 𝛽0 + 𝛽𝑛1
𝑋𝑡

𝑛1 + ⋯+ 𝛽𝑛𝑘
𝑋𝑡

𝑛𝑘 + 𝑧̂𝑡
(𝑏)

  

c. Compute 𝛽̂(𝑏),  𝜎̂2(𝑏), and 𝑦̂𝑡+1
(𝑏)

. 

4) Compute 𝛽̂𝑏𝑜𝑜𝑡, 𝜎̂𝑏𝑜𝑜𝑡
2 , and 𝑦̂(𝑡+1)(𝑏𝑜𝑜𝑡)

(𝑏)
. 

5) Calculate the 100(1-α)% confidence interval for 𝑦̂𝑡+1  

3. Results and Discussion 

As an illustration, we apply the Bootstrap algorithm to determine the prediction interval in simulated 
data (simulation study) and real data (case study). A simulation study was undertaken to confirm the 
performance of the bootstrap algorithm whether it works properly. Case studies are given to provide 
examples of the application of research in solving problems in everyday life. Here resampling is done as 
much as B = 2000 and α = 0.05. 
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3.1. Simulated Data 

Fig. 1 shows a graph of 1000 synthesis data of the subset polynomial regression model with order 2. 
The value of x is determined, hence the value of y is made using equation (1). The values of regression 
coefficients and the variance of error are 𝛽0 = 1, 𝛽2 = 0.5, and 𝜎2 =9. 

 

Fig. 1. Simulated data 

The simulated data in Fig. 1 are matched against the subset polynomial regression model i.e. kmax = 
2. The Bootstrap algorithm is used to estimate the best subset polynomial regression model, the subset 
polynomial regression coefficient and the variance 𝜎2. Estimation of the subset polynomial regression 
model is done by looking at 𝐶𝑘 statistical value for the three regression models of the subset polynomial. 
The 𝐶𝑘 statistical value for the three regression models of the subset polynomial can be seen in Table 1. 

Table 1.  The Ck statistical value 

Subset Polynomial  Regression 

Model with Order 2 

Ck Statistical 

Value 

𝑦 =  𝛽0 + 𝛽1𝑋 62.5997 

𝑦 =  𝛽0 + 𝛽2𝑋
2 9.1938 

𝑦 =  𝛽0 + 𝛽1𝑋 + 𝛽2𝑋
2 9.2170 

 

 

From Table 1 it can be seen that the smallest 𝐶𝑘 statistical value is achieved by the second subset 
polynomial regression model. Thus, the second regression is the best subset polynomial regression 
model. Based on the regression of the best subset polynomial, then the parameters of the corresponding 
subset polynomial regression model are estimated using the least squares method. The results are 𝛽̂0 =

0.9323, 𝛽̂2 = 0.5070, and 𝜎̂2 = 9.1756. If the parameter values and estimator values of both regression 
and variance coefficients are compared then it appears that the Bootstrap algorithm can work well in 
estimating parameters based on synthesis data. Prediction for the value of y1000 if x = 16.4176 is 9.2569 
and the corresponding 95% confidence interval is (9.0984, 9.4117). 

3.2. Real Data 

Table 2 shows the business tendency index (y) and the consumer tendency index (x) in the second 
quarter of 2000 to the fourth quarter of 2009. 
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Table 2.  The business tendency index (BTI) and the consumer tendency index (CTI)    

Year Quarter BTI CTI 

2000 

II 122.50 113.29 

III 117.44 108.04 

IV 116.06 114.23 

2001 

I 107.73 110.52 

II 111.75 104.10 

III 105.36 119.21 

IV 101.03 125.19 

2002 

I 100.03 113.75 

II 113.38 116.65 

III 108.77 119.96 

IV 102.37 120.28 

2003 

I 95.78 105.87 

II 105.16 117.28 

III 111.41 114.17 

IV 114.13 121.73 

2004 

I 104.35 115.20 

II 113.74 112.30 

III 114.12 120.22 

IV 115.03 109.96 

2005 

I 98.93 96.72 

II 106.31 98.68 

III 105.7 93.20 

IV 98.45 94.43 

2006 

I 95.12 96.01 

II 108.5 109.77 

III 108.72 109.16 

IV 107.43 106.96 

2007 

I 100.19 106.93 

II 110.96 105.78 

III 112.58 109.48 

IV 112.25 106.10 

2008 

I 104.41 95.01 

II 111.72 93.84 

III 111.12 102.78 

IV 102.19 100.93 

2009 

I 96.91 102.15 

II 110.43 106.42 

III 112.86 107.79 

IV 108.45 108.76 

       Source: http://www.bps.go.id 

The data in Table 2 are matched against the subset polynomial regression model. Here kmax = 3. The 
bootstrap algorithm was used to obtain the subset polynomial regression model, the regression model 
parameters, and the variance 𝜎2. Estimation of subset polynomial regression model is done by looking 
at the statistical value of 𝐶𝑘 for 7 models. 

From Table 3 it can be seen that the smallest 𝐶𝑘 statistical value is achieved by the 4th subset 
polynomial regression model. Thus, It was the best subset polynomial regression model. 
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Table 3.  The Ck statistical value 

Subset Polynomial Regression 

Model with Order 3 

𝑪𝒌 

Statistical 

Value 
𝑦 =  𝛽0 + 𝛽1𝑋 37.8193 
𝑦 =  𝛽0 + 𝛽2𝑋

2 38.3861 
𝑦 =  𝛽0 + 𝛽3𝑋

3 38.4738 
𝑦 =  𝛽0 + 𝛽1X + 𝛽2𝑋

2 35.9786 
y =  𝛽0 + 𝛽1X + 𝛽3𝑋

3 36.9467 
y =  𝛽0 + 𝛽2𝑋

2 + 𝛽3𝑋
3 36.8494 

y =  𝛽0 + 𝛽1X + 𝛽2𝑋
2 + 𝛽3𝑋

3 37.6857 
 

 

Based on this subset best polynomial regression model, then the parameters of the corresponding 
subset polynomial model are estimated. The results are 𝛽̂0 = −189.1774, 𝛽̂1 = 5.2858, 𝛽̂2 = −0.0234, 

and 𝜎̂2 = 32.6954. The prediction for y41 if x = 108.76 is 108.7878 and the 95% confidence interval for 
y41 if x = 108.76 is (106.8255, 110.7612). 

4. Conclusion 

The paper showed how the Bootstrap algorithm can be used to generate parameter estimations in 
the polynomial subset regression model and determine the prediction interval for the dependent variable 
in the polynomial subset regression model if the error has any distribution. The simulation results 
showed that the Bootstrap algorithm could estimate well the parameters and determine the prediction 
interval. The obtained subset polynomial regression model would be very useful for decision making, for 
example, to predict the value or calculate the prediction interval of variable y in the future. 
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