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ABSTRACT

A significant increase in the size of the medical data, as well as the
complexity of medical diagnosis, poses challenges to processing this data in
a reasonable time. The use of big data is expected to have the upper hand
in managing the large-scale datasets. This research presents the detection
and prediction of lung diseases using big data and deep learning techniques.
In this work, we train neural networks based on Faster R-CNN and

RetinaNet with different backbones (ResNet, CheXNet, and Inception
ResNet V2) for lung disease classification in a distributed and parallel

Keywords g X . .

) processing environment. Moreover, we also experimented with three new
Big data . . q .
Spark network architectures on the medical image dataset: CTXNet, Big Transfer

(BiT), and Swin Transformer, to evaluate their accuracy and training time
in a distributed environment. We provide ten scenarios in two types of
processing environments to compare and find the most promising scenarios
that can be used for the detection of lung diseases on chest X-rays. The
results show that the proposed method can accurately detect and classify
lung lesions on chest X-rays with an accuracy of up to 96%. Additionally,
we use Grad-CAM to highlight lung lesions, thus radiologists can clearly
see the lesions’ location and size without much effort. The proposed
method allows for reducing the costs of time, space, and computing
resources. It will be of great significance to reduce workloads, increase the
capacity of medical examinations, and improve health facilities.
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1. Introduction

Recent studies have demonstrated the effectiveness of machine learning techniques in supporting
medical diagnosis. Especially in medical imaging, deep learning algorithms can perform on par with
human physicians. There are some researches using chest X-rays to detect and classify lung diseases.
Emtiaz Hussain et al. [1] built CoroDet, a 22-layer CNN model, to detect Covid-19 on chest X-rays and
CT scans. The model was tested for 2, 3, and 4 classes (infected, normal, viral pneumonia, and bacterial
pneumonia) and received the accuracy of 99.1%, 94.2%, and 91.2%, respectively. The system
performance was shown to be better than existing state-of-the-art methods in terms of accuracy. A
limitation mentioned in their future goal was the hardware issue to work on larger image sets. Ali Narin
et al. [2] used five pre-trained network models to detect coronavirus pneumonia-infected patients using
chest radiographs. The authors implemented three binary classifications with 4 classes (similar to 4
classes of [1]) using five-fold cross-validation. The results showed that the pre-trained ResNet-50
provides the highest classification performance of 98.4% on average. Rachna Jain et al. [3] presented
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CNN models to detect pneumonia using X-rays. The authors trained six models, of which four were
trained and tested on the ImageNet dataset (VGG16, VGG19, ResNet50, and Inception-V3). The
experimental results showed an accuracy of up to 92.31%. Their proposed model had a high Recall of
98%, which is important in evaluating the number of false negatives in medical imaging. The authors
presented their future concerns regarding the efficiency and accuracy of models in real-time applications
using larger datasets. Asnaoui and Chawki [4] conducted a comparative study of the use of some recent
deep learning models to detect and classify coronavirus pneumonia. The authors provided experiments
on the chest X-rays/CT dataset of 6,087 images. They found that Inception ResNet V2 and DenseNet201
yielded better results than other models, with an accuracy of 92.18% and 88.09%), respectively. Laboni
Sarker et al. [5] proposed a deep learning based approach (CheXNet) to detect COVID-19 patients
effectively. The authors trained and tested their model on a 13,800 chest radiography images dataset
across 13,725 patients. They performed both two-class and three-class classifications and achieved an
accuracy of 96.49% and 93.71%, respectively. The experimental dataset was highly skewed because of
the limitation in open-source data for COVID-19 radiology images. To deal with this issue, the authors
augmented only the COVID-19 images in the training dataset. Thus, their model can be tested further
with more data if available. Liu et al. [6] proposed a new vision Transformer architecture called Swin
Transformer that utilizes shifted windows to compute hierarchical feature maps efficiently. The authors
introduced a shifted window partitioning approach, where self-attention is computed within local
windows, and the windows are shifted between consecutive layers to enable cross-window connections.
This allows the model to capture local and global dependencies while maintaining linear computational
complexity concerning the input image size. Kolesnikov et al. [7] introduced Big Transfer (BiT), a
scalable approach to representation learning that utilizes large-scale supervised pre-training followed by
task-specific fine-tuning. The authors explored the interplay between model capacity, dataset size, and
computational budget, and demonstrated that transfer performance can be significantly improved by
scaling up these factors in tandem. Nahida Habib et al. [8] proposed an ensemble method to diagnose
pneumonia on chest X-rays. Two network models of VGG19 and CheXNet are used to extract features,
and then these features are ensembled for classification. The ensembled feature vector is classified using
Random Forest, Adaptive Boosting, and K-Nearest Neighbors. Random Forest provided a better
performance of 98.93%. The system could be tested with two or more lung diseases for evaluating the
effectiveness of the proposed method. Hasan et al. [9] proposed the CTXNet model, based on the
Compact Convolutional Transformer (CCT) architecture that combines CNNs and Vision
Transformers, achieving remarkable accuracies of 99.77% and 95.37% on CT and X-ray images,
respectively, for classifying lung diseases. CTXNet was demonstrated with faster training times, requiring
only 10 to 12 seconds per epoch for CT scans and 40 to 42 seconds per epoch for X-rays, while traditional
models take 61 to 90 seconds and 170 to 175 seconds per epoch, respectively.

Ei Khaing and Thu Zar Aung [10] proposed a hybrid CNN-LSTM architecture to classify lung
diseases using two publicly available Kaggle datasets. A comprehensive dataset was built, including 3,616
COVID-19, 350 lung opacity, 500 tuberculosis, 10,192 normal, and 1,345 viral pneumonia chest X-ray
images. Ruaa N. Sadoon et al. [11] presented a method to classify lung diseases based on chest X-rays
using transfer learning techniques and deep learning models. Their method achieved accuracies of
95.49%, 94.89%, and 93.69%, respectively, for DenseNet201, MobileNetV3, and VGG19. The proposed
models were tested on real-world images, demonstrating their predictive capabilities. Kavitha S et al.
[12] develop a deep learning model for classifying lung diseases using the NIH Chest X-ray dataset,
achieving the highest accuracy at 83.57% with ResNet50, followed by a custom CNN at 78.25%. This
work provided an insight into the performance of each illness class’s classification in the experimental
dataset. Rekha H et al. [13] proposed a method for the automated classification of lung diseases using
VGG16, VGG19, and DenseNet201, with achieved accuracies of 95%, 96%, and 97%, respectively. The
DenseNet201 was shown to provide superior performance among the three architectures for all three
lung disease classifications. Bhookya [14] proposed a convolutional neural network model to classify
three types of lung diseases on an X-ray dataset, including COVID-19, pneumonia, and tuberculosis,
achieving a 94% accuracy in lung disease classification. Patel et al. [15] present a framework using
EfficientNet-B4 through a transfer learning technique for classifying lung diseases in chest X-rays,
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achieving 96% accuracy. The authors integrated GradCAM to generate insightful heatmaps highlighting
critical regions within images. In practical implementation, the inclusion of multi-modal data is needed
to improve the accuracy of disease classification. Azmat Ali et al. [16] presented the CX-RaysNet
framework for effectively classifying lung diseases in digital chest X-ray images, achieving a multi-class
classification accuracy of 97.25%. The core underlying of the framework is the integration of both
convolutional and groups of convolutional layers, along with small filter sizes and dropout regularization.
Prathibha TP and Pulna M Arabi [17] presented a novel method that is proposed to identify and classify
high-resolution CT images of cancerous lung using machine learning and a K-Nearest Neighbor classifier
with 94% accuracy on 996 images. A future direction of the study is to work on a larger dataset and
include parenchymal pattern identification in lung images to determine the type and the extent of lung
diseases. Padmanabha Reddy et al. [18] propose a model based on a combined architecture of VGG-19
and CNN to classify lung diseases based on a lung X-ray dataset, with an accuracy of 91.57% on the test
dataset. Poonam Rana et al. [19] developed an automated classification scheme for lung cancer presented
in histopathological images using a Dense AlexNet framework with an accuracy of 93% in the training
phase. The experiments were conducted on a dataset of 15,000 histopathological images with three
classes: benign tissue, adenocarcinoma, and squamous cell carcinoma. Gupta et al. [20] proposed a model
that employs two convolutional neural networks (Inception-V3 and Xception) for tuberculosis
classification using the ImageNet dataset, achieving an accuracy of about 98% and 95% on the Shenzhen
and Montgomery datasets. Xiaoyang Fu et al. [21] proposed an explainable transformer with a hybrid
network structure (LungMaxViT) combining a CNN initial stage block with a Sqeeze-and-Excitation
block to improve feature recognition for predicting Chest X-ray images in multi-class classification of
lung diseases and achieving an accuracy of 96.8%. The proposed hybrid model showed its superiority in
terms of accuracy and provided explainable identification results in terms of heat maps.

In addition to many achievements of deep learning across multiple domains, we have seen that due
to computational complexities of the machine learning models and large-scale datasets, the performance
of deep learning methods is reduced with single-computation approaches. Most of the research focuses
on improving the accuracy of the classification models without focusing on the processing time.
Meanwhile, processing time is also an important factor in the context of big data and applications in
real-time systems with a reasonable response time. The challenge of the traditional deep learning models
is that they consume a lot of time and require high-performance processing units. Therefore, the use of
big data along with deep learning techniques is one of the most interesting areas of research, which can
overcome these problems to improve health and medical science. This work proposes a parallel and
distributed deep learning approach for lung disease detection and classification in a big data context. The
main contributions of this paper are summarized as follows:

e Propose a distributed and parallel deep learning approach using Spark for classifying 14 types of

lung diseases on chest X-ray images

e Provide ten scenarios to train CTXNet, Big Transfer (BiT), Swin Transformer, and two neural
networks of the Faster RCNN and RetinaNet with three different backbones of the ResNet-50,
CheXNet, and Inception ResNet V2 to detect and classify lung diseases. The deep learning models
are run across multiple computing nodes

e Provide a comparison of the accuracy, Loss value, and processing time to find the most suitable
scenario that can be used in reality.

2. Background
2.1. Big Data Processing

Big data and machine learning are now rapidly expanding in all science and engineering domains and
changing all aspects of modern life in some way. A large amount of data has been continually generated
at unprecedented and ever-increasing scales. Consequently, it brings tremendous challenges for us to
address problems with higher memory and computation of large-scale datasets and machine learning
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models. Thus, using methods that can reduce storage and computation problems with single
computation approaches is important. To overcome these problems, a parallel and distributed approach
can make the training time and computation drastically faster.

Apache Spark is an open-source MapReduce model framework highlighting speed, ease of use, and
fault tolerance. Spark offers in-memory operations, robust, distributed, fault-tolerant data objects
(namely RDD), and has become a more popular framework for machine learning and processing big
data. Thus, it is a worthy choice for many applications with large data volumes and needing dependable
performance. In this work, the input dataset from Chest X-ray images is stored in HDFS to support
feature extraction and classification in the Spark environment. Spark is a better choice than Hadoop
MapReduce since it processes files in memory instead of on disks. Thus, it is used in this study to enable
fast and efficient distributed processing in a big data context.

2.2. Lesion detection and feature extraction using deep learning
2.2.1. Residual Neural Network (ResNet)

ResNet [22] is the most commonly used architecture since it has fewer parameters. The convolutional
layers of the network have a 3x3 filter, and down-sampling is performed directly by the convolutional
layers of stride 2. The network's last layer is a fully connected layer with two channels using ReLU
activation and softmax activation functions. Shortcut connections are used in ResNet to overcome the
problems of reducing accuracy and vanishing gradients that occur in deep neural networks.

2.2.2. CTXNet

The CTXNet [9] model includes a Convolutional Tokenization block that divides the input image
into patches and converts them into a sequence of embeddings. This sequence of embeddings is then
fed into a transformer encoder block with a self-attention mechanism and a feed-forward network to
extract features. The output of the encoder block is processed by a sequence pooling layer to aggregate
information from all patches. Finally, the output is passed through a fully connected layer with a softmax
activation function to predict the probabilities of the disease classes. With this integrated and optimized
architecture, CTXNet can effectively learn the discriminative features of lung diseases on both X-ray and
CT images with high accuracy and short training time.

2.2.3. Swin Transformers

Swin Transformer [6] is a novel architecture recently proposed for computer vision tasks. Instead of
computing self-attention globally like standard Transformer models, Swin Transformer performs it
within local windows of size 7x7 and shifts the window positions across layers. This shifted window
mechanism significantly reduces the computational complexity from quadratic to linear with respect to
the input image size while still ensuring connections among image regions.

2.2.4. BigTransfer (BiT)

Big Transfer (BiT) [7] is a general and flexible visual representation learning method that utilizes
ResNet-V2 architecture with varying depths and widths, where Group Normalization and Weight
Standardization replace the Batch Normalization layers to improve training efficiency on large batches.
The largest model, BiT-L, with a ResNet-152x4 architecture, is pre-trained on the JFT-300M dataset
and achieves state-of-the-art results on many benchmarks, such as 87.54% top-1 accuracy on ImageNet
ILSVRC-2012, 99.37% on CIFAR-10, and 93.51% on CIFAR-100.

2.2.5. CheXNet

CheXNet [23] is a 121-layer DenseNet trained on the chest X-rays dataset, which contains 112,120
frontal-view X-rays of 30,805 patients. The weights of CheXNet are initialized with a model pretrained
on the ImageNet dataset. DenseNet [24] controls the amount of information to be added, improves
information flow with direct connections, and makes optimization of very deep networks tractable.
DenseNet has less than half the parameters of ResNet-50 but has higher accuracy when training on the
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ImageNet dataset. In this study, the final layer of CheXNet is connected to a fully connected network
with a binary output layer for classification.

2.2.6. Inception ResNet V2

Inception ResNet V2 [25] was developed from the Inception architectures [26] to take advantage of
residual networks and improve the accuracy and convergence speed of the original model. Inception
ResNet V2 is more exquisitely designed based on Inception V4. It utilizes residual connections to
accelerate the training and improve performance. A complete Inception network consists of multiple
Inception modules. The idea of the Inception module is that instead of using a Conv layer with a fixed
kernel size, Inception uses multiple Conv layers simultaneously with different kernel sizes and
concatenates the outputs.

2.3. Neural networks for classification
2.3.1. Faster R-CNN

Faster R-CNN [27] is one of the modern and effective methods for object detection and classification.
It has gone through many versions, such as R-CNN, Fast R-CNN, and Faster R-CNN. Faster R-CNN
is proposed to train a more efticient model, replacing the selective search algorithm, which is inherently
slow. The feature is extracted from the input image and applied to a region-of-interest (ROI) to obtain
the feature vector. The classification results are output through a softmax and a regression layer to predict
the bounding boxes.

2.3.2. RetinaNet

RetinaNet [28] is considered to be quite good at detecting small objects. Cross-entropy is often used
as a loss function in classification problems, which is weak in treating classes equally. The model will
tend to be biased in favor of the main classes and miss the minority classes. This becomes worse when
the minority classes are important classes, such as lung lesions. RetinaNet uses the balanced cross-
entropy function, which assigns higher weights to the minority classes to penalize the model when it
incorrectly predicts these classes strongly.

2.4. Evaluation metrics
2.4.1. Accuracy

Accuracy is calculated based on equation 1, where TP is the true positive; TN is the true negative;
FP is the false positive; and FN is the false negative.

TP+TN
TP+TN+FP+FN

(1)

Accuracy =

2.4.2. Loss Values

The Loss function of Faster R-CNN is determined by classification loss and localization loss as
equations 3 and 4.

1 . 1 .

Loss({p;}, {t:}) = Ezil'cls(pi:pi) + AEZiLreg (i, t;) (2)
x| if x| >«

smooth;, = ﬁxz otherwise 3)

where i is the index of the anchor in mini-batch; p; is the predicted probability of anchor i being an
object; the ground-truth label value p; is 1 if the anchor is positive, and 0 otherwise; ti is a 4-
dimensional vector represents the coordinate values of the predicted bounding box; t; is a 4- dimensional
vector represents the coordinate values of the ground-truth box corresponding to the positive anchor;
Leis is the Multi-class cross-entropy loss of N classes; and Ly is calculated based on equation 4 for
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bounding box regression loss. RetinaNet uses the Focal Loss Function proposed on the basis of the
Cross Entropy loss function by adding two parameters @ and y. The Focal Loss Function is presented
in equation 5.

e «a is used to represent the percentage of generated boxes containing background and foreground
information to help balance the background and foreground when generating bounding boxes.

ey represents the “concentration” on indistinguishable regions. The larger y is, the smaller the loss
value in the distinguishable region will be. The loss value of the indistinguishable region will
contribute to the total loss value of the model.

e s is the model’s estimated probability in range [0,1]

L=—a;(1-s;)"log(s;) “4)

3. Method

We deploy a distributed and parallel processing model for feature extraction and lung lesion
classification to improve processing time for large datasets. The general model consists of two phases,
the training and testing phases, as illustrated in Fig. 1. The details of the proposed method are described
as follows.

Spark environment
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@ : 3
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,,,,,,,,,,,,, Spark environment
Normal Atelectasis Effusion ‘ Infultrates Pneumonia ‘ ‘
Fig. 1. General model of the proposed method
3.1. Training phase

3.1.1. Pre-processing

Various image enhancement techniques are applied to the input X-ray images, such as Gabor filter,
Local binary Pattern, Histogram Equalization, Adaptive Histogram Equalization (AHE), etc. In this
stage, noise reduction is accomplished by using a filter like the median filter. The AHE [29] technique
is used to enhance the contrast of the image and performs well in CNN-based feature extraction. The
images are resized to 256x256 to train as per the pretrained models' requirements. Then, we normalize
the gray-scale images to the range [0,1] to match the input type of the models. We also apply two
techniques of random cropping and flipping images to have data augmentation for the training dataset.

3.1.2. Distributed and parallel data processing with Spark for extraction and training models

Feature extraction and classification in large-scale datasets are time-consuming tasks for lung lesion
detection and classification systems. To overcome this problem, we propose the extraction and
classification of lung diseases in the MapReduce distributed and parallel processing model with the
flexibility to persist data records, either in memory, on disk, or both. The MapReduce processing model
for feature extraction and classification consists of map and reduce functions as presented in Fig. 2. A
large amount of input data is split into different partitions on a distributed file system. The partition

processing is distributed efficiently for execution on multiple computing nodes. A map task is mapping
=
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an input image into a feature vector and a reduce task combines all feature vectors of the same key to
produce a classification result. The output of this process is a trained model for lung lesion detection
and classification.

Map Function Reduce Function

— Cardiomegaly

——+ Atelectasis

Input

Data —— Consolidation

—— Nodule

Shuffle
(Data transfer)

Distribute File System Processing Results

Fig. 2. MapReduce processing model

In this study, we deploy a distributed deep learning model on Spark for lung disease classification in
a big data context. It supports iterative processes and is suitable for machine learning and optimization
algorithms. This not only saves processing time but also reduces the training and identification time for
deep learning models. Fig. 3 describes the distributed and parallel model to train and identify lung lesions
and diseases. It shows a Spark cluster consisting of a manager (master) and a number of workers (slaves).
The master node running the Spark job is responsible for scheduling, assigning, distributing, and
monitoring tasks to worker nodes, which run the actual Spark tasks.

Driver server: \
fk? Master Model

parameters T

l updia.tes

Spa

Worker server Worker server Worker server

Data Data Data

o =

Fig. 3. Distributed and parallel model on a Spark cluster for extraction and training

The master node splits the input dataset into sub-datasets and then feeds them to the workers to
handle parallel and distributed feature extraction. The workers execute tasks and forward the status of
the tasks to the master. As a result, the features of lung lesions are extracted from chest x-ray images
and temporarily saved in memory serving the further process of model training. In parallel training, the

e —
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master is responsible for computing average weights to provide a global average parameter (W) of
network parameters, meanwhile, the remaining workers are responsible for training. Each worker obtains
the local weights Wi corresponding to its local weights of the network to send updates to the master
node. The same weights W are distributed to all workers when the averaging is executed. After training
is complete, the training model with a global average parameter (W) is stored in HDFS on each worker
to identify the lung lesions and diseases.

Due to the limitation of the experimental dataset and the advantages of deep neural networks, we
apply the transfer learning technique to re-use the parameters. This helps to learn new features faster,
shortens the training time, and does not require large datasets. The input images are extracted features
to feed into the pre-trained network models on the workers for training. The model parameters are
updated from different workers to the driver program on the master. The training process is repeated
with a number of learning steps until the Loss value is not improved (not reduced) and the classification
accuracy does not increase. We stop the training phase and implement the testing phase.

3.2. Testing phase

Lung disease features are extracted from the test images and then passed through the trained models
to identify lung diseases. In this phase, we use a parallel and distributed model for extraction and
classification. The master node is responsible for splitting the test image dataset into batches and
inputting them to the trained models with the global average parameter W on workers to extract features
and classify. The output of this process includes bounding boxes of the lung lesions and the type labels
of the lung diseases.

To accurately identify the area of severe lung injury, we use GradCAM (Gradient-weighted Class
Activation Mapping) [30] heat map (Fig. 4). We use the gradient information of the final conv layer to
generate a rough map of the important regions in the image. Grad-CAM is a strict generalization of the
Activation Mapping layers. It does not require retraining and is widely applicable to any CNN based
architecture. To generate the heat maps, in this study, the Convolutional Block Attention Module
(CBAM) and ResNet integrated network [31] are used to refine the output features of each residual
block in ResNet.

Input feature Feature Refined feature Output feature

i ____ _conwv ,———————— CBAM - :
: ¢ / :

ResBlock + CBAM

Fig. 4. Creating GradCam for output images

4, Results and Discussion
4.1. Experiments
4.1.1. Dataset and installation environment

The experiments are conducted on the public Kaggle NIH Chest X-ray dataset [32]. This dataset
includes 112,120 disease-labeled X-ray images from 30,805 patients. The labels are expected to be over
90% accurate, suitable for weakly supervised learning. We divide 89,600 images used as the training set
and 22,400 images as the testing set, corresponding to the ratio of 80:20. There are 15 classes, including
14 types of diseases and a class of “No findings”. The images can be classified as “No findings” or a disease
as listed in Fig. 5. The input images are 600x600px.
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Fig. 5.Input dataset description

The experiments are conducted in two types of environments: a single computing environment and
a parallel computing environment.

e Envl: Single computing environment: The computer's configuration is 16GB RAM and Nvidia
Tesla P100.

e Env2: Parallel computing environment: We store the training model and data on multiple machines
and cores. The processing is divided on an Apache Spark cluster, including a master (2 cores and
4GB RAM) and 8 workers (each has 2 cores and 8GB RAM). The library used to train the models
is BigDL 0.12

4.1.2. Scenarios and Parameters

We propose ten scenarios with the training network models and parameters as described in Table 1.
All scenarios have the same learning rate of 0.0001, mAP@IoU of 0.5, and 20 training steps. The number
of classes is 15, corresponding to 14 types of lung lesions and “No findings”.

Table 1. Proposed scenarios and training parameters

1. Envl Faster R-CNN Inception ResNet-V2
2. Envl Faster R-CNN CheXNet
3. Envl Faster R-CNN ResNet-50
4. Envl RetinaNet ResNet-50
5. Envl CTXNet Transformer encoder
6. Envl Big Transfer (BiT) ResNet + Group Normalization
7. Envl Swin Transformers Self-attention
8. Env2 Faster R-CNN Inception ResNet-V2
9. Env2 Faster R-CNN CheXNet
10. Env2 Faster R-CNN ResNet-50

4.2. Results

4.2.1. Training results

In the training phase, we find the optimal weights of the scenarios by calculating the lowest Loss
values to make a decision to stop training.
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4.2.1.1. Loss value

Fig. 6 and Fig. 7 show the loss values of ten scenarios in a single computing approach and a distributed
processing environment. The loss value tends to decrease rapidly at the beginning of the training process.
It significantly and evenly decreases in the following training steps, showing that the features are learned
effectively after 20 epochs. We stop the training process when the loss value no longer decreases after 20
epochs. The average loss values of scenarios 1, 2, 3, and 5 are 0.097, 0.096, 0.112, and 0.12, respectively.
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Fig. 6.Loss values of scenarios 1, 2, 3, 4, 5, and 6

The average loss value in scenario 4 is up to 0.24, which is quite high compared to scenarios 1-3. As
can be seen, scenario 2 with Faster R-CNN CheXNet has the lowest loss value, and scenario 4 with
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RetinaNet ResNet-50 has the highest loss value among the first four scenarios. Among the three models
with Transformer architecture in scenarios 5, 6, and 7, the loss values are 0.095, 0.097, and 0.096,
respectively. The results show that all three models achieve good performance with very low and nearly
equivalent loss values, demonstrating the power of the Transformer architecture in learning features on
medical images.

Fig. 7 shows the loss values of scenarios 8, 9, and 10 with 20 epochs of training for a parallel
computing approach. The loss values are taken when training the network models on a Spark cluster
with workers. As the number of workers increases, the loss value also increases. The loss values of
scenarios 8, 9, and 10 when running on a cluster of four workers are 0.176, 0.185, and 0.177, respectively,
and on a cluster of 8 workers are 0.191, 0.228, and 0.212, respectively. Consequently, scenario 8 has the
lowest loss value with an average loss of 0.16 compared to scenarios 9 and 10.
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Fig. 7.Loss value of scenarios 7 on a single computing environment and scenarios 8, 9, and 10 on a Spark
cluster of 2 workers

Increasing the number of workers for parallel computation causes the loss values of scenarios 8-10 to
increase compared to scenarios 1-7 in single computation, which means that the false predictions
increase. Using the same network models, Faster R-CNN, Inception ResNet V2, but running in different
environments, scenario 6 shows the ability of the parallel computation compared to scenario 1 with
single computation. In a big data context, the input dataset is divided and fed into the workers to train
the neural networks with a large activation function consuming a lot of memory. It is inappropriate for
deep learning to train on a single machine with low memory capacity causing congestion, which increases
training time.
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4.2.1.2. Accuracy

Fig. 8 and Fig. 9 show the accuracy of Faster R-CNN and RetinaNet in the first seven scenarios. As
can be seen, the seven models give quite similar and stable results at above 94%.
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Fig. 9 shows the accuracy of scenarios 8, 9, and 10 on a Spark cluster of 2 workers. Table 2 shows

the average accuracy of 10 scenarios. The network models in scenarios 1, 6, and 7 give better results

compared to the models in scenarios 2, 3, 4, and 5. Although RetinaNet in scenario 4 does not improve

accuracy, it is suitable for shortening training time and detecting smaller objects. In a parallel processing

environment, scenario 8 gives the highest accuracy above 90%. In general, increasing the number of
workers causes a decrease in accuracy.

Table 2. Average accuracy of 10 scenarios

Scenario Environment No. Workers Accuracy (%)
1. Envl 01 96.05
2. Envl 01 95.2
3. Envl 01 95.5
4. Envl 01 94.7
5. Envl 01 95.77
6. Envl 01 96.03
7. Envl 01 96.05

02 92.7
8. Env2 04 91.3
08 90
02 89.5
9. Env2 04 83
08 81.3
02 89.5
10. Env2 04 87.8
08 87.5

4.2.1.3. Training time

Fig. 10 shows the model’s training time in 10 scenarios. Faster R-CNN Inception ResNet V2 in
scenario 1 provides the shortest training time compared to the remaining models in scenarios 2, 3, and
4. The longest training time is 7.1 hours of Faster R-CNN ResNet-50. RetinaNet in scenario 4 gives
faster training time compared to Faster R-CNN when combined with ResNet-50. In the parallel
processing environment, the training time is more than 2 times faster than the training time in a single
computing environment. The training time does not decrease significantly when we increase the number
of workers, since the master has to aggregate data on many workers, increasing the waiting time. Thus,
choosing the appropriate number of workers depends on the dataset and computer configuration.

8
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Fig. 10. Training time of the 10 scenarios

The training results indicate that the experimental models trained in a distributed environment have
significantly accelerated the processing and training phases, greatly reducing the required time compared
to a local setup. However, this approach introduces a certain degree of accuracy variation between the
two environments, as shown in Table 2. Nevertheless, the discrepancy remains within an acceptable
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range, ensuring the overall effectiveness of the model. This aligns with real-world challenges, where the
increasing volume of medical data necessitates systems capable of rapid analysis and efticient large-scale
data processing while maintaining flexibility for future scalability and expansion. Additionally, we will
continue to optimize the experimental models in the distributed environment to minimize
misclassification cases while enhancing overall performance in terms of accuracy and training speed in
our future work.

4.2.2. Testing results
4.2.2.1. Average accuracy and prediction time

We evaluate scenarios 1-10 by calculating the accuracy and run-time of the detection and
classification for the testing dataset, as illustrated in Fig. 11 and Fig. 12. Fig. 11 represents the average
prediction accuracy of the scenarios. The accuracy of 10 scenarios ranges from 81.4% to 96.7%. Scenarios
1 and 7 give the results of classification with the highest accuracy, up to 96.7%, compared to the
remaining scenarios. We can see that the classification accuracy of scenarios 8-10 decreases when the
number of workers increases because the training dataset is subdivided into batches to train on workers;
thus, the network models are trained and fine-tuned on the workers with sub-training datasets. As a
result, the global weights of the training model are the average of the local weights on workers.
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Fig. 11. Average prediction accuracy of 10 scenarios for the testing phase

Nevertheless, the decrease in accuracy is negligible, while the processing time for prediction decreases
rapidly, as shown in Fig. 12.
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Fig. 12. Execution time of 10 scenarios for the testing phase
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The execution time of scenarios 8-10 in Spark is shortened by approximately 50% compared with
the execution time of scenarios 1-7. This is the price to trade off when the processing speed is fast, the
accuracy decreases, and vice versa. However, it is suitable in today’s increasingly large data context for
early diagnosis and timely treatment because a key requirement for lung disease detection is that the
solutions work in real-time or near real-time.

4.2.2.2. GradCam heat map

We use the GradCam heat map tool to determine the most severe area of the lesion. This method
uses gradients to calculate the significance of the spatial positions in the convolutional layers. Grad-
CAM results clearly show central regions. The location of the most severe lung lesion is shown with
colors. The colors on the GradCam heat map represent the severity of the injury in order from left to
right. Some illustration results of lung lesion regions are shown in Fig. 13.

H
>
o v

Fig. 13. GradCam heat map on X-rays

4.2.3. Comparison and Discussion

Fig. 14 presents a comparison of the proposed method and recent related works in terms of accuracy.
While existing research has achieved accuracy rates of up to 99%, the proposed approach attains
approximately 96% accuracy during the training phase. However, our results indicate that training in a
distributed environment significantly reduces processing time, making model training more efficient.
This comes at the cost of a slight reduction in accuracy compared to a local environment. In future work,
we aim to optimize the distributed training process further to mitigate this accuracy gap while
maintaining computational efficiency.
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Fig. 14. Comparing the accuracy with recent related works

In this work, we also conducted lung cancer classification using state-of-the-art classification
architectures, including CTXNet, BiT, and Swin Transformer, corresponding to scenarios 5, 6, and 7.
These experimental models achieved high accuracy during training while requiring less training time
compared to other scenarios in the local environment. In future work, we will proceed with
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implementing and deploying scenarios 5, 6, and 7 in a distributed environment to evaluate their
performance in terms of accuracy and training time compared to the local environment. In addition,
small lesions that are difficult to detect, such as solitary pulmonary nodules, are easily missed, but
RetinaNet gives outstanding detection results. This model can detect small lesions thanks to the Focal
Loss function.

5. Conclusion

This research focuses on developing a prediction model using deep learning methods and Apache
Spark architecture for diagnosing lung diseases. We focus on designing ten scenarios to train two Faster
R-CNN and RetinaNet neural networks with three backbones of the ResNet-50, CheXNet, and
Inception ResNet-V2 in two environments of single and parallel computation. Moreover, we also
experimented with three new network architectures on the medical image dataset: CTXNet, Big Transfer
(BiT), and Swin Transformer. The proposed method with the first seven scenarios extracts and classifies
features of lung diseases using deep learning with a single computing approach. The three remaining
scenarios of the proposed method are deployed by a parallel and distributed approach on Spark, with the
number of worker nodes increasing from 2 to 8. The experimental results show that the Faster R-CNN
Inception ResNet-V2 model gives the highest result, 96.05% in a single computing environment and
92.7% in a parallel computing environment. Additionally, the Swin Transformers model gives a similar
accuracy of 96.05% on a single computer. We compare the accuracy, Loss value, and computational time
for the proposed scenarios to find the most promising scenarios that can be used to detect and classify
lung diseases on chest X-rays. Moreover, we use the Grad-CAM tool to highlight the lung lesions, thus
radiologists can see the location and size of the lesions without much effort. The experimental results
show that using big data combined with deep learning for training and prediction is more effective than
traditional deep learning, as both deep learning and big data are rapidly growing fields. In further
research, we will make a comparative study by applying some deep learning methods along with Spark
architecture on other well-developed datasets to find the most promising models that can be used for
early diagnosis of lung disease on chest X-rays.
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