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1. Introduction 
Recent studies have demonstrated the effectiveness of machine learning techniques in supporting 

medical diagnosis. Especially in medical imaging, deep learning algorithms can perform on par with 

human physicians. There are some researches using chest X-rays to detect and classify lung diseases. 

Emtiaz Hussain et al. [1] built CoroDet, a 22-layer CNN model, to detect Covid-19 on chest X-rays and 

CT scans. The model was tested for 2, 3, and 4 classes (infected, normal, viral pneumonia, and bacterial 

pneumonia) and received the accuracy of 99.1%, 94.2%, and 91.2%, respectively. The system 

performance was shown to be better than existing state-of-the-art methods in terms of accuracy. A 

limitation mentioned in their future goal was the hardware issue to work on larger image sets. Ali Narin 

et al. [2] used five pre-trained network models to detect coronavirus pneumonia-infected patients using 

chest radiographs. The authors implemented three binary classifications with 4 classes (similar to 4 

classes of [1]) using five-fold cross-validation. The results showed that the pre-trained ResNet-50 

provides the highest classification performance of 98.4% on average. Rachna Jain et al. [3] presented 
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 A significant increase in the size of the medical data, as well as the 

complexity of medical diagnosis, poses challenges to processing this data in 

a reasonable time. The use of big data is expected to have the upper hand 

in managing the large-scale datasets. This research presents the detection 

and prediction of lung diseases using big data and deep learning techniques. 

In this work, we train neural networks based on Faster R-CNN and 

RetinaNet with different backbones (ResNet, CheXNet, and Inception 

ResNet V2) for lung disease classification in a distributed and parallel 

processing environment. Moreover, we also experimented with three new 

network architectures on the medical image dataset: CTXNet, Big Transfer 

(BiT), and Swin Transformer, to evaluate their accuracy and training time 

in a distributed environment. We provide ten scenarios in two types of 

processing environments to compare and find the most promising scenarios 

that can be used for the detection of lung diseases on chest X-rays. The 

results show that the proposed method can accurately detect and classify 

lung lesions on chest X-rays with an accuracy of up to 96%. Additionally, 

we use Grad-CAM to highlight lung lesions, thus radiologists can clearly 

see the lesions’ location and size without much effort. The proposed 

method allows for reducing the costs of time, space, and computing 

resources. It will be of great significance to reduce workloads, increase the 

capacity of medical examinations, and improve health facilities.  
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CNN models to detect pneumonia using X-rays. The authors trained six models, of which four were 

trained and tested on the ImageNet dataset (VGG16, VGG19, ResNet50, and Inception-V3). The 

experimental results showed an accuracy of up to 92.31%. Their proposed model had a high Recall of 

98%, which is important in evaluating the number of false negatives in medical imaging. The authors 

presented their future concerns regarding the efficiency and accuracy of models in real-time applications 

using larger datasets. Asnaoui and Chawki [4] conducted a comparative study of the use of some recent 

deep learning models to detect and classify coronavirus pneumonia. The authors provided experiments 

on the chest X-rays/CT dataset of 6,087 images. They found that Inception ResNet V2 and DenseNet201 

yielded better results than other models, with an accuracy of 92.18% and 88.09%, respectively. Laboni 

Sarker et al. [5] proposed a deep learning based approach (CheXNet) to detect COVID-19 patients 

effectively. The authors trained and tested their model on a 13,800 chest radiography images dataset 

across 13,725 patients. They performed both two-class and three-class classifications and achieved an 

accuracy of 96.49% and 93.71%, respectively. The experimental dataset was highly skewed because of 

the limitation in open-source data for COVID-19 radiology images. To deal with this issue, the authors 

augmented only the COVID-19 images in the training dataset. Thus, their model can be tested further 

with more data if available. Liu et al. [6] proposed a new vision Transformer architecture called Swin 

Transformer that utilizes shifted windows to compute hierarchical feature maps efficiently. The authors 

introduced a shifted window partitioning approach, where self-attention is computed within local 

windows, and the windows are shifted between consecutive layers to enable cross-window connections. 

This allows the model to capture local and global dependencies while maintaining linear computational 

complexity concerning the input image size. Kolesnikov et al. [7] introduced Big Transfer (BiT), a 

scalable approach to representation learning that utilizes large-scale supervised pre-training followed by 

task-specific fine-tuning. The authors explored the interplay between model capacity, dataset size, and 

computational budget, and demonstrated that transfer performance can be significantly improved by 

scaling up these factors in tandem. Nahida Habib et al. [8] proposed an ensemble method to diagnose 

pneumonia on chest X-rays. Two network models of VGG19 and CheXNet are used to extract features, 

and then these features are ensembled for classification. The ensembled feature vector is classified using 

Random Forest, Adaptive Boosting, and K-Nearest Neighbors. Random Forest provided a better 

performance of 98.93%. The system could be tested with two or more lung diseases for evaluating the 

effectiveness of the proposed method. Hasan et al. [9] proposed the CTXNet model, based on the 

Compact Convolutional Transformer (CCT) architecture that combines CNNs and Vision 

Transformers, achieving remarkable accuracies of 99.77% and 95.37% on CT and X-ray images, 

respectively, for classifying lung diseases. CTXNet was demonstrated with faster training times, requiring 

only 10 to 12 seconds per epoch for CT scans and 40 to 42 seconds per epoch for X-rays, while traditional 

models take 61 to 90 seconds and 170 to 175 seconds per epoch, respectively.  

Ei Khaing and Thu Zar Aung [10] proposed a hybrid CNN-LSTM architecture to classify lung 

diseases using two publicly available Kaggle datasets. A comprehensive dataset was built, including 3,616 

COVID-19, 350 lung opacity, 500 tuberculosis, 10,192 normal, and 1,345 viral pneumonia chest X-ray 

images. Ruaa N. Sadoon et al. [11] presented a method to classify lung diseases based on chest X-rays 

using transfer learning techniques and deep learning models. Their method achieved accuracies of 

95.49%, 94.89%, and 93.69%, respectively, for DenseNet201, MobileNetV3, and VGG19. The proposed 

models were tested on real-world images, demonstrating their predictive capabilities. Kavitha S et al. 

[12] develop a deep learning model for classifying lung diseases using the NIH Chest X-ray dataset, 

achieving the highest accuracy at 83.57% with ResNet50, followed by a custom CNN at 78.25%. This 

work provided an insight into the performance of each illness class’s classification in the experimental 

dataset. Rekha H et al. [13] proposed a method for the automated classification of lung diseases using 

VGG16, VGG19, and DenseNet201, with achieved accuracies of 95%, 96%, and 97%, respectively. The 

DenseNet201 was shown to provide superior performance among the three architectures for all three 

lung disease classifications. Bhookya [14] proposed a convolutional neural network model to classify 

three types of lung diseases on an X-ray dataset, including COVID-19, pneumonia, and tuberculosis, 

achieving a 94% accuracy in lung disease classification. Patel et al. [15] present a framework using 

EfficientNet-B4 through a transfer learning technique for classifying lung diseases in chest X-rays, 
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achieving 96% accuracy. The authors integrated GradCAM to generate insightful heatmaps highlighting 

critical regions within images. In practical implementation, the inclusion of multi-modal data is needed 

to improve the accuracy of disease classification. Azmat Ali et al. [16] presented the CX-RaysNet 

framework for effectively classifying lung diseases in digital chest X-ray images, achieving a multi-class 

classification accuracy of 97.25%. The core underlying of the framework is the integration of both 

convolutional and groups of convolutional layers, along with small filter sizes and dropout regularization. 

Prathibha TP and Pulna M Arabi [17] presented a novel method that is proposed to identify and classify 

high-resolution CT images of cancerous lung using machine learning and a K-Nearest Neighbor classifier 

with 94% accuracy on 996 images. A future direction of the study is to work on a larger dataset and 

include parenchymal pattern identification in lung images to determine the type and the extent of lung 

diseases. Padmanabha Reddy et al. [18] propose a model based on a combined architecture of VGG-19 

and CNN to classify lung diseases based on a lung X-ray dataset, with an accuracy of 91.57% on the test 

dataset. Poonam Rana et al. [19] developed an automated classification scheme for lung cancer presented 

in histopathological images using a Dense AlexNet framework with an accuracy of 93%  in the training 

phase. The experiments were conducted on a dataset of 15,000 histopathological images with three 

classes: benign tissue, adenocarcinoma, and squamous cell carcinoma. Gupta et al. [20] proposed a model 

that employs two convolutional neural networks (Inception-V3 and Xception) for tuberculosis 

classification using the ImageNet dataset, achieving an accuracy of about 98% and 95% on the Shenzhen 

and Montgomery datasets. Xiaoyang Fu et al. [21] proposed an explainable transformer with a hybrid 

network structure (LungMaxViT) combining a CNN initial stage block with a Sqeeze-and-Excitation 

block to improve feature recognition for predicting Chest X-ray images in multi-class classification of 

lung diseases and achieving an accuracy of 96.8%. The proposed hybrid model showed its superiority in 

terms of accuracy and provided explainable identification results in terms of heat maps. 

In addition to many achievements of deep learning across multiple domains, we have seen that due 

to computational complexities of the machine learning models and large-scale datasets, the performance 

of deep learning methods is reduced with single-computation approaches. Most of the research focuses 

on improving the accuracy of the classification models without focusing on the processing time. 

Meanwhile, processing time is also an important factor in the context of big data and applications in 

real-time systems with a reasonable response time. The challenge of the traditional deep learning models 

is that they consume a lot of time and require high-performance processing units. Therefore, the use of 

big data along with deep learning techniques is one of the most interesting areas of research, which can 

overcome these problems to improve health and medical science. This work proposes a parallel and 

distributed deep learning approach for lung disease detection and classification in a big data context. The 

main contributions of this paper are summarized as follows: 

• Propose a distributed and parallel deep learning approach using Spark for classifying 14 types of 

lung diseases on chest X-ray images 

• Provide ten scenarios to train CTXNet, Big Transfer (BiT), Swin Transformer, and two neural 

networks of the Faster RCNN and RetinaNet with three different backbones of the ResNet-50, 

CheXNet, and Inception ResNet V2 to detect and classify lung diseases. The deep learning models 

are run across multiple computing nodes 

• Provide a comparison of the accuracy, Loss value, and processing time to find the most suitable 

scenario that can be used in reality. 

2. Background 

2.1. Big Data Processing 

Big data and machine learning are now rapidly expanding in all science and engineering domains and 

changing all aspects of modern life in some way. A large amount of data has been continually generated 

at unprecedented and ever-increasing scales. Consequently, it brings tremendous challenges for us to 

address problems with higher memory and computation of large-scale datasets and machine learning 
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models. Thus, using methods that can reduce storage and computation problems with single 

computation approaches is important. To overcome these problems, a parallel and distributed approach 

can make the training time and computation drastically faster.  

Apache Spark is an open-source MapReduce model framework highlighting speed, ease of use, and 

fault tolerance. Spark offers in-memory operations, robust, distributed, fault-tolerant data objects 

(namely RDD), and has become a more popular framework for machine learning and processing big 

data. Thus, it is a worthy choice for many applications with large data volumes and needing dependable 

performance. In this work, the input dataset from Chest X-ray images is stored in HDFS to support 

feature extraction and classification in the Spark environment. Spark is a better choice than Hadoop 

MapReduce since it processes files in memory instead of on disks. Thus, it is used in this study to enable 

fast and efficient distributed processing in a big data context. 

2.2. Lesion detection and feature extraction using deep learning 

2.2.1. Residual Neural Network (ResNet) 

ResNet [22] is the most commonly used architecture since it has fewer parameters. The convolutional 

layers of the network have a 3x3 filter, and down-sampling is performed directly by the convolutional 

layers of stride 2. The network's last layer is a fully connected layer with two channels using ReLU 

activation and softmax activation functions. Shortcut connections are used in ResNet to overcome the 

problems of reducing accuracy and vanishing gradients that occur in deep neural networks. 

2.2.2. CTXNet 

The CTXNet [9] model includes a Convolutional Tokenization block that divides the input image 

into patches and converts them into a sequence of embeddings. This sequence of embeddings is then 

fed into a transformer encoder block with a self-attention mechanism and a feed-forward network to 

extract features. The output of the encoder block is processed by a sequence pooling layer to aggregate 

information from all patches. Finally, the output is passed through a fully connected layer with a softmax 

activation function to predict the probabilities of the disease classes. With this integrated and optimized 

architecture, CTXNet can effectively learn the discriminative features of lung diseases on both X-ray and 

CT images with high accuracy and short training time. 

2.2.3. Swin Transformers 

Swin Transformer [6] is a novel architecture recently proposed for computer vision tasks. Instead of 

computing self-attention globally like standard Transformer models, Swin Transformer performs it 

within local windows of size 7×7 and shifts the window positions across layers. This shifted window 

mechanism significantly reduces the computational complexity from quadratic to linear with respect to 

the input image size while still ensuring connections among image regions. 

2.2.4. BigTransfer (BiT) 

Big Transfer (BiT) [7] is a general and flexible visual representation learning method that utilizes 

ResNet-V2 architecture with varying depths and widths, where Group Normalization and Weight 

Standardization replace the Batch Normalization layers to improve training efficiency on large batches. 

The largest model, BiT-L, with a ResNet-152x4 architecture, is pre-trained on the JFT-300M dataset 

and achieves state-of-the-art results on many benchmarks, such as 87.54% top-1 accuracy on ImageNet 

ILSVRC-2012, 99.37% on CIFAR-10, and 93.51% on CIFAR-100. 

2.2.5. CheXNet 

CheXNet [23] is a 121-layer DenseNet trained on the chest X-rays dataset, which contains 112,120 

frontal-view X-rays of 30,805 patients. The weights of CheXNet are initialized with a model pretrained 

on the ImageNet dataset. DenseNet [24] controls the amount of information to be added, improves 

information flow with direct connections, and makes optimization of very deep networks tractable. 

DenseNet has less than half the parameters of ResNet-50 but has higher accuracy when training on the 
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ImageNet dataset. In this study, the final layer of CheXNet is connected to a fully connected network 

with a binary output layer for classification. 

2.2.6. Inception ResNet V2 

Inception ResNet V2 [25] was developed from the Inception architectures [26] to take advantage of 

residual networks and improve the accuracy and convergence speed of the original model. Inception 

ResNet V2 is more exquisitely designed based on Inception V4. It utilizes residual connections to 

accelerate the training and improve performance. A complete Inception network consists of multiple 

Inception modules. The idea of the Inception module is that instead of using a Conv layer with a fixed 

kernel size, Inception uses multiple Conv layers simultaneously with different kernel sizes and 

concatenates the outputs. 

2.3. Neural networks for classification 

2.3.1. Faster R-CNN 

Faster R-CNN [27] is one of the modern and effective methods for object detection and classification. 

It has gone through many versions, such as R-CNN, Fast R-CNN, and Faster R-CNN. Faster R-CNN 

is proposed to train a more efficient model, replacing the selective search algorithm, which is inherently 

slow. The feature is extracted from the input image and applied to a region-of-interest (ROI) to obtain 

the feature vector. The classification results are output through a softmax and a regression layer to predict 

the bounding boxes. 

2.3.2. RetinaNet 

RetinaNet [28] is considered to be quite good at detecting small objects. Cross-entropy is often used 

as a loss function in classification problems, which is weak in treating classes equally. The model will 

tend to be biased in favor of the main classes and miss the minority classes. This becomes worse when 

the minority classes are important classes, such as lung lesions. RetinaNet uses the balanced cross-

entropy function, which assigns higher weights to the minority classes to penalize the model when it 

incorrectly predicts these classes strongly. 

2.4. Evaluation metrics 

2.4.1. Accuracy 

Accuracy is calculated based on equation 1, where 𝑇𝑇𝑇𝑇 is the true positive; 𝑇𝑇𝑇𝑇 is the true negative; 

𝐹𝐹𝐹𝐹 is the false positive; and 𝐹𝐹𝐹𝐹 is the false negative. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

   (1) 

2.4.2. Loss Values 

The Loss function of Faster R-CNN is determined by classification loss and localization loss as 

equations 3 and 4. 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿({𝑝𝑝𝑖𝑖}, {𝑡𝑡𝑖𝑖}) = 1
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

∑ 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐(𝑝𝑝𝑖𝑖 ,𝑖𝑖 𝑝𝑝𝑖𝑖∗) + 𝜆𝜆 1
𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟

∑ 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡𝑖𝑖 ,𝑖𝑖 𝑡𝑡𝑖𝑖∗)  (2) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝐿𝐿1 = �
|𝑥𝑥|   𝑖𝑖𝑖𝑖 |𝑥𝑥| > 𝛼𝛼
1

|𝛼𝛼|
𝑥𝑥2   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   (3) 

where 𝑖𝑖 is the index of the anchor in mini-batch; 𝑝𝑝𝑖𝑖  is the predicted probability of anchor 𝑖𝑖 being an 

object; the ground-truth label value 𝑝𝑝𝑖𝑖∗ is 1 if the anchor is positive, and 0 otherwise; 𝑡𝑡𝑖𝑖 is a 4-

dimensional vector represents the coordinate values of the predicted bounding box; 𝑡𝑡𝑖𝑖∗ is a 4- dimensional 

vector represents the coordinate values of the ground-truth box corresponding to the positive anchor; 

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 is the Multi-class cross-entropy loss of 𝑁𝑁 classes; and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 is calculated based on equation 4 for 
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bounding box regression loss. RetinaNet uses the Focal Loss Function proposed on the basis of the 

Cross Entropy loss function by adding two parameters 𝛼𝛼 and 𝛾𝛾. The Focal Loss Function is presented 

in equation 5. 

• 𝛼𝛼 is used to represent the percentage of generated boxes containing background and foreground 

information to help balance the background and foreground when generating bounding boxes. 

• 𝛾𝛾 represents the “concentration” on indistinguishable regions. The larger 𝛾𝛾 is, the smaller the loss 

value in the distinguishable region will be. The loss value of the indistinguishable region will 

contribute to the total loss value of the model. 

• si is the model’s estimated probability in range [0,1] 

𝐿𝐿 = −𝛼𝛼𝑖𝑖(1 − 𝑠𝑠𝑖𝑖)𝛾𝛾 log(𝑠𝑠𝑖𝑖)   (4) 

3. Method 
We deploy a distributed and parallel processing model for feature extraction and lung lesion 

classification to improve processing time for large datasets. The general model consists of two phases, 

the training and testing phases, as illustrated in Fig. 1. The details of the proposed method are described 

as follows. 

 

Fig. 1. General model of the proposed method 

3.1. Training phase 

3.1.1. Pre-processing 

Various image enhancement techniques are applied to the input X-ray images, such as Gabor filter, 

Local binary Pattern, Histogram Equalization, Adaptive Histogram Equalization (AHE), etc. In this 

stage, noise reduction is accomplished by using a filter like the median filter. The AHE [29] technique 

is used to enhance the contrast of the image and performs well in CNN-based feature extraction. The 

images are resized to 256x256 to train as per the pretrained models' requirements. Then, we normalize 

the gray-scale images to the range [0,1] to match the input type of the models. We also apply two 

techniques of random cropping and flipping images to have data augmentation for the training dataset. 

3.1.2. Distributed and parallel data processing with Spark for extraction and training models 

Feature extraction and classification in large-scale datasets are time-consuming tasks for lung lesion 

detection and classification systems. To overcome this problem, we propose the extraction and 

classification of lung diseases in the MapReduce distributed and parallel processing model with the 

flexibility to persist data records, either in memory, on disk, or both. The MapReduce processing model 

for feature extraction and classification consists of map and reduce functions as presented in Fig. 2. A 

large amount of input data is split into different partitions on a distributed file system. The partition 

processing is distributed efficiently for execution on multiple computing nodes. A map task is mapping 
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an input image into a feature vector and a reduce task combines all feature vectors of the same key to 

produce a classification result. The output of this process is a trained model for lung lesion detection 

and classification. 

 

Fig. 2. MapReduce processing model 

In this study, we deploy a distributed deep learning model on Spark for lung disease classification in 

a big data context. It supports iterative processes and is suitable for machine learning and optimization 

algorithms. This not only saves processing time but also reduces the training and identification time for 

deep learning models. Fig. 3 describes the distributed and parallel model to train and identify lung lesions 

and diseases. It shows a Spark cluster consisting of a manager (master) and a number of workers (slaves). 

The master node running the Spark job is responsible for scheduling, assigning, distributing, and 

monitoring tasks to worker nodes, which run the actual Spark tasks. 

 

Fig. 3. Distributed and parallel model on a Spark cluster for extraction and training 

The master node splits the input dataset into sub-datasets and then feeds them to the workers to 

handle parallel and distributed feature extraction. The workers execute tasks and forward the status of 

the tasks to the master. As a result, the features of lung lesions are extracted from chest x-ray images 

and temporarily saved in memory serving the further process of model training. In parallel training, the 
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master is responsible for computing average weights to provide a global average parameter (𝑊𝑊) of 

network parameters, meanwhile, the remaining workers are responsible for training. Each worker obtains 

the local weights 𝑊𝑊𝑊𝑊 corresponding to its local weights of the network to send updates to the master 

node. The same weights 𝑊𝑊 are distributed to all workers when the averaging is executed. After training 

is complete, the training model with a global average parameter (𝑊𝑊) is stored in HDFS on each worker 

to identify the lung lesions and diseases. 

Due to the limitation of the experimental dataset and the advantages of deep neural networks, we 

apply the transfer learning technique to re-use the parameters. This helps to learn new features faster, 

shortens the training time, and does not require large datasets. The input images are extracted features 

to feed into the pre-trained network models on the workers for training. The model parameters are 

updated from different workers to the driver program on the master. The training process is repeated 

with a number of learning steps until the Loss value is not improved (not reduced) and the classification 

accuracy does not increase. We stop the training phase and implement the testing phase. 

3.2. Testing phase 

Lung disease features are extracted from the test images and then passed through the trained models 

to identify lung diseases. In this phase, we use a parallel and distributed model for extraction and 

classification. The master node is responsible for splitting the test image dataset into batches and 

inputting them to the trained models with the global average parameter 𝑊𝑊 on workers to extract features 

and classify. The output of this process includes bounding boxes of the lung lesions and the type labels 

of the lung diseases. 

To accurately identify the area of severe lung injury, we use GradCAM (Gradient-weighted Class 

Activation Mapping) [30] heat map (Fig. 4). We use the gradient information of the final conv layer to 

generate a rough map of the important regions in the image. Grad-CAM is a strict generalization of the 

Activation Mapping layers. It does not require retraining and is widely applicable to any CNN based 

architecture. To generate the heat maps, in this study, the Convolutional Block Attention Module 

(CBAM) and ResNet integrated network [31] are used to refine the output features of each residual 

block in ResNet. 

 

Fig. 4. Creating GradCam for output images 

4. Results and Discussion 

4.1. Experiments 

4.1.1. Dataset and installation environment 

The experiments are conducted on the public Kaggle NIH Chest X-ray dataset [32]. This dataset 

includes 112,120 disease-labeled X-ray images from 30,805 patients. The labels are expected to be over 

90% accurate, suitable for weakly supervised learning. We divide 89,600 images used as the training set 

and 22,400 images as the testing set, corresponding to the ratio of 80:20. There are 15 classes, including 

14 types of diseases and a class of “No findings”. The images can be classified as “No findings” or a disease 

as listed in Fig. 5. The input images are 600×600px. 
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Fig. 5. Input dataset description 

The experiments are conducted in two types of environments: a single computing environment and 

a parallel computing environment. 

• Env1: Single computing environment: The computer's configuration is 16GB RAM and Nvidia 

Tesla P100.   

• Env2: Parallel computing environment: We store the training model and data on multiple machines 

and cores. The processing is divided on an Apache Spark cluster, including a master (2 cores and 

4GB RAM) and 8 workers (each has 2 cores and 8GB RAM). The library used to train the models 

is BigDL 0.12 

4.1.2. Scenarios and Parameters 

We propose ten scenarios with the training network models and parameters as described in Table 1. 

All scenarios have the same learning rate of 0.0001, mAP@IoU of 0.5, and 20 training steps. The number 

of classes is 15, corresponding to 14 types of lung lesions and “No findings”. 

Table 1.  Proposed scenarios and training parameters 

Scenario Environment Classification Feature extraction 

1. Env1 Faster R-CNN Inception ResNet-V2 

2. Env1 Faster R-CNN CheXNet 

3. Env1 Faster R-CNN ResNet-50 

4. Env1 RetinaNet ResNet-50 

5. Env1 CTXNet Transformer encoder 

6. Env1 Big Transfer (BiT) ResNet + Group Normalization 

7. Env1 Swin Transformers Self-attention 

8. Env2 Faster R-CNN Inception ResNet-V2 

9. Env2 Faster R-CNN CheXNet 

10. Env2 Faster R-CNN ResNet-50 

4.2. Results 

4.2.1. Training results 

In the training phase, we find the optimal weights of the scenarios by calculating the lowest Loss 

values to make a decision to stop training. 
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4.2.1.1. Loss value 

Fig. 6 and Fig. 7 show the loss values of ten scenarios in a single computing approach and a distributed 

processing environment. The loss value tends to decrease rapidly at the beginning of the training process. 

It significantly and evenly decreases in the following training steps, showing that the features are learned 

effectively after 20 epochs. We stop the training process when the loss value no longer decreases after 20 

epochs. The average loss values of scenarios 1, 2, 3, and 5 are 0.097, 0.096, 0.112, and 0.12, respectively.  

 

a) Scenario 1 

 

b) Scenario 2 

 

d) Scenario 4 

 

c) Scenario 3 

 

e) Scenario 5 

 

f) Scenario 6 

Fig. 6. Loss values of scenarios 1, 2, 3, 4, 5, and 6 

The average loss value in scenario 4 is up to 0.24, which is quite high compared to scenarios 1-3. As 

can be seen, scenario 2 with Faster R-CNN CheXNet has the lowest loss value, and scenario 4 with 
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RetinaNet ResNet-50 has the highest loss value among the first four scenarios. Among the three models 

with Transformer architecture in scenarios 5, 6, and 7, the loss values are 0.095, 0.097, and 0.096, 

respectively. The results show that all three models achieve good performance with very low and nearly 

equivalent loss values, demonstrating the power of the Transformer architecture in learning features on 

medical images. 

Fig. 7 shows the loss values of scenarios 8, 9, and 10 with 20 epochs of training for a parallel 

computing approach. The loss values are taken when training the network models on a Spark cluster 

with workers. As the number of workers increases, the loss value also increases. The loss values of 

scenarios 8, 9, and 10 when running on a cluster of four workers are 0.176, 0.185, and 0.177, respectively, 

and on a cluster of 8 workers are 0.191, 0.228, and 0.212, respectively. Consequently, scenario 8 has the 

lowest loss value with an average loss of 0.16 compared to scenarios 9 and 10.    

 

a) Senario 7 

 

b) Scenario 8 

 

c) Scenario 9 

 

d) Scenario 10 

Fig. 7. Loss value of scenarios 7 on a single computing environment and scenarios 8, 9, and 10 on a Spark 

cluster of 2 workers 

Increasing the number of workers for parallel computation causes the loss values of scenarios 8-10 to 

increase compared to scenarios 1-7 in single computation, which means that the false predictions 

increase. Using the same network models, Faster R-CNN, Inception ResNet V2, but running in different 

environments, scenario 6 shows the ability of the parallel computation compared to scenario 1 with 

single computation. In a big data context, the input dataset is divided and fed into the workers to train 

the neural networks with a large activation function consuming a lot of memory. It is inappropriate for 

deep learning to train on a single machine with low memory capacity causing congestion, which increases 

training time. 
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4.2.1.2. Accuracy 

Fig. 8 and Fig. 9 show the accuracy of Faster R-CNN and RetinaNet in the first seven scenarios. As 

can be seen, the seven models give quite similar and stable results at above 94%.  

   

a) Scenario 1 b) Scenario 2 c) Scenario 3 

   

d) Scenario 4 e) Scenario 4 f) Scenario f 

Fig. 8. Accuracy of scenarios 1, 2, 3, 4, 5, and 6 

  

a) Scenario 7 b) Scenario 8 

 
 

c) Scenario 9 d) Scenario 10 

Fig. 9. Accuracy of scenarios 7, 8, 9, and 10 
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Fig. 9 shows the accuracy of scenarios 8, 9, and 10 on a Spark cluster of 2 workers. Table 2 shows 

the average accuracy of 10 scenarios. The network models in scenarios 1, 6, and 7 give better results 

compared to the models in scenarios 2, 3, 4, and 5. Although RetinaNet in scenario 4 does not improve 

accuracy, it is suitable for shortening training time and detecting smaller objects. In a parallel processing 

environment, scenario 8 gives the highest accuracy above 90%. In general, increasing the number of 

workers causes a decrease in accuracy. 

Table 2.  Average accuracy of 10 scenarios 

Scenario Environment No. Workers Accuracy (%) 
1. Env1 01 96.05 

2. Env1 01 95.2 

3. Env1 01 95.5 

4. Env1 01 94.7 

5. Env1 01 95.77 

6. Env1 01 96.03 

7. Env1 01 96.05 

8. Env2 

02 92.7 

04 91.3 

08 90 

9. Env2 

02 89.5 

04 83 

08 81.3 

10. Env2 

02 89.5 

04 87.8 

08 87.5 

4.2.1.3. Training time 

Fig. 10 shows the model’s training time in 10 scenarios. Faster R-CNN Inception ResNet V2 in 

scenario 1 provides the shortest training time compared to the remaining models in scenarios 2, 3, and 

4. The longest training time is 7.1 hours of Faster R-CNN ResNet-50. RetinaNet in scenario 4 gives 

faster training time compared to Faster R-CNN when combined with ResNet-50. In the parallel 

processing environment, the training time is more than 2 times faster than the training time in a single 

computing environment. The training time does not decrease significantly when we increase the number 

of workers, since the master has to aggregate data on many workers, increasing the waiting time. Thus, 

choosing the appropriate number of workers depends on the dataset and computer configuration. 

 

Fig. 10. Training time of the 10 scenarios 

The training results indicate that the experimental models trained in a distributed environment have 

significantly accelerated the processing and training phases, greatly reducing the required time compared 

to a local setup. However, this approach introduces a certain degree of accuracy variation between the 

two environments, as shown in Table 2. Nevertheless, the discrepancy remains within an acceptable 
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range, ensuring the overall effectiveness of the model. This aligns with real-world challenges, where the 

increasing volume of medical data necessitates systems capable of rapid analysis and efficient large-scale 

data processing while maintaining flexibility for future scalability and expansion. Additionally, we will 

continue to optimize the experimental models in the distributed environment to minimize 

misclassification cases while enhancing overall performance in terms of accuracy and training speed in 

our future work. 

4.2.2. Testing results 

4.2.2.1. Average accuracy and prediction time 

We evaluate scenarios 1-10 by calculating the accuracy and run-time of the detection and 

classification for the testing dataset, as illustrated in Fig. 11 and Fig. 12. Fig. 11 represents the average 

prediction accuracy of the scenarios. The accuracy of 10 scenarios ranges from 81.4% to 96.7%. Scenarios 

1 and 7 give the results of classification with the highest accuracy, up to 96.7%, compared to the 

remaining scenarios. We can see that the classification accuracy of scenarios 8-10 decreases when the 

number of workers increases because the training dataset is subdivided into batches to train on workers; 

thus, the network models are trained and fine-tuned on the workers with sub-training datasets. As a 

result, the global weights of the training model are the average of the local weights on workers.  

 

Fig. 11. Average prediction accuracy of 10 scenarios for the testing phase 

Nevertheless, the decrease in accuracy is negligible, while the processing time for prediction decreases 

rapidly, as shown in Fig. 12. 

 

Fig. 12. Execution time of 10 scenarios for the testing phase 
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The execution time of scenarios 8-10 in Spark is shortened by approximately 50% compared with 

the execution time of scenarios 1-7. This is the price to trade off when the processing speed is fast, the 

accuracy decreases, and vice versa. However, it is suitable in today’s increasingly large data context for 

early diagnosis and timely treatment because a key requirement for lung disease detection is that the 

solutions work in real-time or near real-time. 

4.2.2.2. GradCam heat map 

We use the GradCam heat map tool to determine the most severe area of the lesion. This method 

uses gradients to calculate the significance of the spatial positions in the convolutional layers. Grad-

CAM results clearly show central regions. The location of the most severe lung lesion is shown with 

colors. The colors on the GradCam heat map represent the severity of the injury in order from left to 

right. Some illustration results of lung lesion regions are shown in Fig. 13. 

    

 

Fig. 13. GradCam heat map on X-rays 

4.2.3. Comparison and Discussion 

Fig. 14 presents a comparison of the proposed method and recent related works in terms of accuracy. 

While existing research has achieved accuracy rates of up to 99%, the proposed approach attains 

approximately 96% accuracy during the training phase. However, our results indicate that training in a 

distributed environment significantly reduces processing time, making model training more efficient. 

This comes at the cost of a slight reduction in accuracy compared to a local environment. In future work, 

we aim to optimize the distributed training process further to mitigate this accuracy gap while 

maintaining computational efficiency. 

 

Fig. 14. Comparing the accuracy with recent related works 

In this work, we also conducted lung cancer classification using state-of-the-art classification 

architectures, including CTXNet, BiT, and Swin Transformer, corresponding to scenarios 5, 6, and 7. 

These experimental models achieved high accuracy during training while requiring less training time 

compared to other scenarios in the local environment. In future work, we will proceed with 
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implementing and deploying scenarios 5, 6, and 7 in a distributed environment to evaluate their 

performance in terms of accuracy and training time compared to the local environment. In addition, 

small lesions that are difficult to detect, such as solitary pulmonary nodules, are easily missed, but 

RetinaNet gives outstanding detection results. This model can detect small lesions thanks to the Focal 

Loss function. 

5. Conclusion 
This research focuses on developing a prediction model using deep learning methods and Apache 

Spark architecture for diagnosing lung diseases. We focus on designing ten scenarios to train two Faster 

R-CNN and RetinaNet neural networks with three backbones of the ResNet-50, CheXNet, and 

Inception ResNet-V2 in two environments of single and parallel computation. Moreover, we also 

experimented with three new network architectures on the medical image dataset: CTXNet, Big Transfer 

(BiT), and Swin Transformer. The proposed method with the first seven scenarios extracts and classifies 

features of lung diseases using deep learning with a single computing approach. The three remaining 

scenarios of the proposed method are deployed by a parallel and distributed approach on Spark, with the 

number of worker nodes increasing from 2 to 8. The experimental results show that the Faster R-CNN 

Inception ResNet-V2 model gives the highest result, 96.05% in a single computing environment and 

92.7% in a parallel computing environment. Additionally, the Swin Transformers model gives a similar 

accuracy of 96.05% on a single computer. We compare the accuracy, Loss value, and computational time 

for the proposed scenarios to find the most promising scenarios that can be used to detect and classify 

lung diseases on chest X-rays. Moreover, we use the Grad-CAM tool to highlight the lung lesions, thus 

radiologists can see the location and size of the lesions without much effort. The experimental results 

show that using big data combined with deep learning for training and prediction is more effective than 

traditional deep learning, as both deep learning and big data are rapidly growing fields. In further 

research, we will make a comparative study by applying some deep learning methods along with Spark 

architecture on other well-developed datasets to find the most promising models that can be used for 

early diagnosis of lung disease on chest X-rays. 
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