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ABSTRACT

This study focused on algorithm performance and training/testing time,
evaluating the most suitable chest X-ray image size for machine learning
models to predict pneumonia infection. The neural network algorithm
achieved an accuracy rate of 87.00% across different image sizes. While
larger images generally yield better results, there is a decline in performance
beyond a certain size. Lowering the image resolution to 32x32 pixels

significantly reduces performance to 83.00% likely due to the loss of
diagnostic features. Furthermore, this study emphasizes the relationship

Keywords X . . . .. .

Chest X-ray between image size and processing time, empirically revealing that both
suitable size increasing and decreasing image size beyond the optimal point results in
Covid-19 increased training and testing time. The performance was noted with

299x299 pixel images completing the process in seconds. Our results
indicate a balance between efficiency, as larger images slightly improved
accuracy but slowed down speed, while smaller images negatively impacted
precision and effectiveness. These findings assist in optimizing chest X-ray
image sizes for pneumonia prediction models by weighing diagnostic
accuracy against computational resources.

Machine learning
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1. Introduction

Pneumonia is a severe infectious disease that affects the lower respiratory system, caused by
inflammation of the alveoli in the lungs. The disease can be triggered by various pathogens, including
fungi, bacteria, and viruses [1], [2]. According to the World Health Organization (WHO), pneumonia
remains a significant global health issue, particularly in developing countries, and it contributes to a
considerable number of deaths, especially among children under the age of five [3]. In addition to the
unfortunate events mentioned above to emphasize the significant nature of pneumonia as a global health
threat. The emergence of coronavirus disease 2019 (COVID-19) has also led to an increase in respiratory
infections worldwide. The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to an
unprecedented global public health crisis [4]. The virus primarily attacks the respiratory tract, resulting
in acute lung injury where the alveoli fill with pus and fluid when a person has pneumonia, causing
difficulty breathing and limiting oxygen consumption, and in severe cases, acute respiratory distress
syndrome (ARDS), resulting in significantly increased morbidity and mortality [5].
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As the novel coronavirus disease (COVID-19) continues its global spread, researchers employ a range
of methodologies to decipher the virus's biology and identify factors influencing its evolution and
outbreak patterns. Phylogenetic and phylodynamic approaches are pivotal in this endeavor, enabling
scientists to trace the virus's transmission pathways and understand its evolutionary dynamics. These
methods involve analyzing genetic sequences from diverse SARS-CoV-2 samples worldwide, facilitating
the reconstruction of the virus's spread, and identifying mutations that may affect transmissibility or
virulence. The study has provided an important foundation for developing measures that the WHO has
implemented to control the spread of COVID-19. They have used data from analyzing virus strains and
tracking the spread of the virus in different regions. The WHO has recommended guidelines and control
measures, including social distancing, wearing face masks, self-isolation, travel restrictions, and patient
screening. These measures have been specifically designed to control the spread of the virus and minimize
the risk of infection on a global scale [6]. Over the past five years, the WHO declared COVID-19 no
longer a public health emergency of international concern (PHEIC) on May 5, 2020 [7], highlighting a
decreased number of infections, hospitalizations, deaths, ICU admissions, and ubiquitous immunization
against the virus [8]. However, this announcement does not mean that the world is free from
coronavirus-2019 because new strains of the virus are constantly emerging and being discovered
nowadays [9]. And they remain a major threat to the world's social and economic systems. A variety of
screening techniques and diagnostic procedures provide surveillance strategies. It is essential for finding
and isolating affected individuals, which helps to stop the spread of the virus. In addition, screening
initiatives enable early identification of new strains, allowing rapid adjustments to immunization
programs and public health regulations to effectively deal with problems caused by the virus.

A chest X-ray (CXR) is a widely utilized diagnostic imaging technique that employs X-rays to
produce detailed images of the organs within the thoracic cavity, including the lungs, heart, and ribs.
This non-invasive procedure provides clinicians with an efficient means of detecting and evaluating
abnormalities in these structures. It is particularly valuable in diagnosing pneumonia, a condition
characterized by inflammation of the lung tissue, typically resulting from an infectious etiology. Chest
X-rays are essential for identifying key indicators of pneumonia, such as pulmonary inflammation, fluid
accumulation, and infection, which can aid in assessing the extent and severity of the condition. This
information is crucial for guiding treatment decisions and determining the appropriate management
course. Additionally, CXR monitors treatment progression and evaluates the patient's recovery. Recent
clinical guidelines have recommended CXR as the initial imaging modality for patients with suspected
pneumonia, underscoring its role in effective clinical decision-making [10].

Machine learning (ML) has revolutionized the analysis of medical images, particularly chest X-rays
(CXRs), by enhancing diagnostic accuracy and efficiency. ML algorithms, especially deep learning
models, play a critical role in automating CXR interpretation, enabling the detection of various thoracic
conditions, including pneumonia, tuberculosis, and lung cancer. These models identify subtle patterns
in large datasets, improving diagnostic precision. ML also reduces the workload for radiologists, allowing
them to focus on complex cases, while promoting early detection of abnormalities and timely
interventions that can improve patient outcomes. Recent advancements in ML, such as self-supervised
learning models like EVA-X [11], have furthered the generalization of CXR analysis across multiple
diseases. Additionally, the fusion of convolutional neural networks (CNNs) [12] and vision transformers
has resulted in more accurate multi-label chest X-ray classification. These developments demonstrate
the scalability of ML systems, enabling access to high-quality diagnostic support in settings with limited
radiological expertise. As ML continues to evolve, it holds the potential to significantly enhance
diagnostic capabilities, early detection, and patient care, especially in resource-constrained environments.

However, previous studies have suggested that determining an appropriate image resolution is critical
for improving machine learning performance in medical imaging, with higher resolution chest X-ray
(CXR) images improving classification accuracy [13], whereas studies on tuberculosis lesion
segmentation have shown that increasing image resolution does not always yield better results [14]. In
our study, we look at the impact of CXR image size on the trade-off between image detail and
computational efficiency to improve diagnostic accuracy. The findings are intended to help develop more
efficient and resource-efficient Al-powered medical imaging applications.
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2. Method

We divide the research methodology into the following parts: examining the sample size and number
of medical images in each study, and a popular machine learning algorithm for classifying different types
of medical images.

2.1. The Size and Amount of Medical Images

According to the previous literature review, medical imaging has been widely used in research and
development, with differences in the size and number of samples depending on the purpose and goals of
each research project, as shown in Table 1.

Table 1. Review summary of chest X-ray image size for developing a model

Details
Researcher - - - - - —
Size of images (pixel) Number of images (instances) Medical image type
Olar et al. [15] 512x512 1589 X-ray
Pal et al. [16] 224x224 6432 X-ray
Baik et al. [17] 512x512 23712 X-ray
Ukwuoma et al. [18] 299x299 14400 X-ray
Reddy et al. [19] 512x512, 1024x1024 1818 X-ray
Liu and Shen [20] 28x28, 56x56, 112x112, 224x224 30386 X-ray
Chen et al. [21] 224x224, 299x299 21165 X-ray
Echtioui and Ayed [22] 224x224 15156 X-ray
Abdullah ez al. [23] 150x150 9220 X-ray
Akyol [24] 224x224 16360 X-ray
Moris et al. [25] 4892x4020, 948x1130, 2048x2048 1047 X-ray
Asif et al. [26] 256x256 3886 X-ray
Shastri et al. [27] 224x224 1045 X-ray
Hayat et al. [28] 128x128, 224x224, 229x229 17599 X-ray
Alghamdi et al. [29] 256x256, 512x512, 1024x1024 3555 X-ray
Kanjanasurat et al. [30] 512x512 16210 X-ray
Sarp et al. [31] 224x224 6000 X-ray
Salama ez al. [32] 220x220 2482 CT-scan
Bitto et al. [33] 224x224 7138 MRI
Prasetyo et al. [34] 224x224 5865 X-ray

2.2. Machine Learning Algorithms for Medical Image Classification

In recent years, various machine learning algorithms and methodologies have been widely applied in
medical image classification and prediction for illness analysis and diagnosis, as shown in Table 2.

Table 2. Examples of machine learning algorithms application in medical image classification

Researcher Details
Machine learning algorithms Target Medical image type
Prince et al. [35] Decision tree, naive Bayes, COVID-19 detection from chest X-ray X-ray image
logistic regression, support images using CLAHE-YCrCb, LBP, and
vector machine, and k-nearest machine learning algorithms.
neighbors.
Singh et al. [36] Support vector machine Atherosclerotic plaque classification in Ultrasound
carotid ultrasound images using machine
learning.
Zeng et al. [37] Convolutional neural network. Detection and processing of pulmonary Computed
nodules in CT images. Tomography
Jiang et al. [38] Logistic regression, SVM, Magnetic resonance imaging brain tumor Computed
decision tree, k-NN, and image classification based on five ML Tomography

stochastic gradient descent. algorithms.
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Details

Researcher

Machine learning algorithms

Target

Medical image type

Lehtonen et al.

[39] support vector machine, ridge,
elastic net, logistic regression,
random forest, and extreme

Nemoto et al.

Linear regression, lasso,

Random forest, naive Bayes,
[40] support vector machine, k-
nearest neighbors.

Incremental prognostic value of downstream
positron emission tomography (PET)
perfusion imaging after coronary computed
tomography angiography: a machine learning

gradient boosting. study.

Evaluation of the performance of both
machine learning models using PET and CT
radionics for predicting recurrence following

lung stereotactic body radiation therapy.

Positron Emission

Tomography

Hybrid modalities

2.3. Machine Learning and Its Applications in Medical Imaging

The development of machine learning techniques has greatly impacted policy-making, organizational
transformation, and management processes in medicine, including diagnosis, nursing care, follow-up,
and health management. This section highlights examples of machine learning applications to various

medical image datasets widely used in medical imaging systems, as shown in Table 3.

Table 3. Application of machine learning algorithms in medical image analysis

Researcher

Details

Objective

Dataset

Approaches to medical

application

Albataineh et al. [41]

Islam et al. [42]

UmaMaheswaran et al. [43]

Anantharajan ez al. [44]

Morani et al. [45]

Chaw et al. [46]

Yang et al. [47]

Barber ez al.[48]

Ala and Goli [49]

Kavitha et al. [50]

Kadum et al. [51]

Diagnosing the severity of COVID-
19 from CT-scan images.
Using deep learning to identify
COVID-19 and pneumonia from
CT scan and X-ray images.
Early acute stroke detection using
machine learning approach with
Brain Computed Tomography.
MRI brain tumor detection using
deep learning and machine learning
approaches.

COVID-19 detection using CT
images
The accuracy of machine learning
algorithms in predicting shock risk
in dengue patients.
Machine learning application in
personalised lung cancer recurrence
and survivability prediction.
Natural language processing with
machine learning to predict
outcomes after ovarian cancer
surgery.
Assigning patients to the operating
room based on fairness policy using
machine learning.

Early-stage Alzheimer’s disease
prediction using machine learning
models.

Machine learning-based
telemedicine framework to prioritize
remote patients.

CT-scan image

CT-scan image, X-ray
image

Brain Computed

Tomography scan (Brain

CT)
Magnetic Resonant
Imaging (MRI)

CT-scan image

Physiological data of
patients

The Cancer Genome
Atlas (TCGA)

CT-scan image

Room data

Magnetic Resonant

Imaging (MRI)

ECG, blood pressure

Medical images

Predictive analytics

Personalized medicine

Natural language
processing

Operational efficiency

Genomics and
precision medicine

Remote monitoring
and telemedicine
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3. Results and Discussion

This section presents the results obtained from the research concept and framework shown in Fig. 1
and the datasets used in the study. Importantly, the research process and methodology were validated by
Loei Rajabhat University's Research Ethics Committee (LRUREC No. H 009/2566).

3.1. Chest X-ray Image Processing and Model Development
3.1.1. Collect chest X-ray images

This study collected medical image datasets from four major public data repositories: Data.World,
UCI Machine Learning Repository, Kaggle, and Reddit are popular datasets because they provide curated
datasets for research and education. Since the chest X-ray (CXR) dataset has shown an important and
empirical role in pneumonia screening and diagnosis, only CXR images were selected to ensure
consistency and a comprehensive tool used clinically. The dataset includes images of pneumonia, lung
infections, COVID-19, and healthy individuals, offering a comprehensive view of thoracic conditions.
The images are provided in multiple formats, such as .jpg, .jpeg, and .png, to support various image
processing and machine-learning applications.

Collect chest x-ray images of
Organization AITMS patients (Normal, Covid-19,

E E ! " NH [" W H M ﬁﬂ M H M . O pneumonia, lung infection,

,,,,, etc.)

Image verification and
selection by expert
doctors and medical staff.

Test and select appropriate
data mining techniques.

A Islon Tree, Gradlent , k-Nearest Nelghbor, Loglistic Regression,
Naive Bayes Neural Network, Random Foms't Support Vector Machine, Stacking (Best Iearr‘lir‘lg efficiency}

O TEEE e mmm i M )

according to the
experimental _Plan' 32x32 1o szxsiz e 10267

Medd T Tot | A CA P | Peec Rel Sper
g bgssion | 109 139 A 0904 R34 0HT 094 o
el 274 17M A9 03D 0AY 035) 0AN B
o 156 083 ATE OST RAT GSM G A6
Hnntor Ferest 227 138 498 03T 04T ONS 04T S

Summary of oo, o e o e o o e
experll’l’lenlal o AEIT 108 AT 04T 04N 0T 0 AT

Haren Ruges AWE 1AM 4GS 04M 0BRS 04 0N &N
and research | 208 1% e 0w aTZ 0T e
Nieuial Netwere S5E 14N A9 03K 037 0250 0837 698

results

Fig. 1. Overview of the research process

Create and develop models

3.1.2. Image verification and selection

Doctors and relevant officials will examine and verify all chest X-rays from the previous imaging data
collection process for any abnormalities. After that, we will perform a computer screening of the images
to select only those with medically acceptable completeness characteristics. The type of file used in this
research will be in .jpg format only.

3.1.3. Adjust the size of the images

We plan to resize the images to 9 sizes together with the original images. The input image data for
our machine learning process consists of images of sizes 1024x1024, 640x640, 512x512, 320x320,
299x299, 256x256, 128x128, 64x64, and 32x32. These images were resized according to the image sizes
shown in Table 1. An image-resizing application was used to perform this operation. After resizing the
images, the datasets of different sizes were stored in separate folders. Each dataset was divided into
training and testing datasets.
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3.2. Model simulation workflows in the Orange data mining software

In this section, we design a procedure to test the performance of machine learning algorithms on
medical images of different sizes using the orange tools. Orange, a data mining software developed in
1997 by researchers at the University of Ljubljana, Slovenia [52], [53], was initially implemented in C++
and C to support machine learning algorithms. It was later redeveloped using the Python library,
enhancing its functionality. Orange provides machine learning and data visualization capabilities through
an intuitive, workflow-based interface.

According to the development team, this software is a graphical user interface focused on exploratory
data analysis (EDA) instead of coding. Our experiment used 10 algorithms: gradient boosting, random
forest, decision tree, support vector machine, AdaBoost, neural network, logistic regression, k-nearest

neighbors, naive bays, and stacking, as shown in Fig. 2.
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Fig. 2. Simulation workflows of performance testing of learning algorithms

3.3. Experiment results

The primary objective of this research was to identify the optimal dimensions for chest X-ray images
to maximize the performance of machine learning models in accurately and efficiently detecting or
predicting pneumonia cases. The study emphasized that selecting an appropriate image size plays a critical
role in enhancing the capability of machine learning algorithms to process medical imaging data
effectively. This optimization ensures precise identification of pneumonia cases and facilitates timely
diagnosis, thereby supporting healthcare professionals in making informed clinical decisions. Such
advancements are particularly significant in mitigating the spread and impact of the disease during the
pandemic. The evaluation of the machine learning models utilized a comprehensive set of performance
metrics, including training time, testing time, classification accuracy, Fl-score, precision, recall, and
specificity, as detailed in Table 4-Table 12. These metrics were employed to assess the robustness and
reliability of the models, ensuring their suitability for real-world applications in medical image analysis.
By adopting this systematic approach, the study contributes to developing efficient diagnostic tools,
underscoring the potential of machine learning in addressing the challenges of pandemic management.
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Table 4. 1024x1024 of Chest X-ray image sizes
. Performance measurements
Altgoritmog Train time (s)  Test time (s) cA F1 Prec Recall Spec
AdaBoost 602.56 5.35 0.69 0.69 0.69 0.69 0.84
DecisionTree 765.13 0.22 0.71 0.71 0.71 0.71 0.85
Gradient Boosting 34099.18 8.88 0.84 0.84 0.84 0.84 0.90
k-Nearest Neighbor 10.46 76.94 0.82 0.82 0.83 0.82 0.88
Logistic Regression 7565.94 5.11 0.87 0.87 0.87 0.87 0.93
Naive Bayes 26.67 6.93 0.65 0.66 0.69 0.65 0.86
Neural Network 922.32 13.48 0.88 0.88 0.88 0.88 0.93
Random Forest 80.28 5.53 0.79 0.78 0.79 0.79 0.87
SVM 529.42 155.13 0.59 0.61 0.67 0.59 0.85
Stacking 37853.22 5.60 0.77 0.75 0.80 0.77 0.82
Table 5. 640x640 of Chest X-ray image sizes
. Performance measurements
Altgoritmog Train time (s)  Test time (s) cA F1 Prec Recall Spec
AdaBoost 596.20 5.40 0.69 0.69 0.69 0.69 0.84
DecisionTree 858.82 0.11 0.71 0.71 0.71 0.71 0.85
Gradient Boosting 19891.14 8.66 0.84 0.84 0.84 0.84 0.90
k-Nearest Neighbor 10.67 81.91 0.82 0.82 0.82 0.82 0.88
Logistic Regression 7497.82 5.50 0.87 0.87 0.87 0.87 0.92
Naive Bayes 25.87 6.66 0.64 0.65 0.69 0.65 0.86
Neural Network 745.32 10.38 0.88 0.88 0.88 0.88 0.93
Random Forest 89.22 5.94 0.79 0.78 0.79 0.79 0.87
SVM 528.23 153.62 0.59 0.61 0.67 0.59 0.84
Stacking 49832.72 5.63 0.77 0.75 0.81 0.77 0.82
Table 6. 512x512 of Chest X-ray image sizes
. Performance measurements
Alfgorditmng Train time (s)  Test time (s) cA F1 Prec Recall Spec
AdaBoost 757.08 6.83 0.69 0.69 0.69 0.69 0.84
DecisionTree 965.81 0.23 0.72 0.72 0.72 0.72 0.85
Gradient Boosting 24625.43 15.53 0.84 0.84 0.84 0.84 0.89
k-Nearest Neighbor 12.49 92.69 0.82 0.82 0.82 0.82 0.88
Logistic Regression 7433.73 5.42 0.87 0.87 0.87 0.87 0.93
Naive Bayes 37.18 10.18 0.65 0.65 0.69 0.65 0.86
Neural Network 807.58 10.35 0.88 0.88 0.88 0.88 0.92
Random Forest 103.68 6.75 0.78 0.78 0.78 0.79 0.87
SVM 585.65 181.15 0.58 0.61 0.68 0.58 0.85
Stacking 57606.97 24.25 0.77 0.73 0.79 0.76 0.81
Table 7. 320x320 of Chest X-ray image sizes
. Performance measurements
£lfgortitmg Train time (s)  Test time (s) cA F1 Prec Recall Spec
AdaBoost 582.27 5.12 0.69 0.69 0.69 0.69 0.84
DecisionTree 765.47 0.09 0.71 0.71 0.71 0.71 0.85
Gradient Boosting 19867.69 8.62 0.84 0.84 0.84 0.84 0.9
k-Nearest Neighbor 9.92 79.24 0.82 0.82 0.82 0.82 0.88
Logistic Regression 7527.89 5.07 0.87 0.87 0.87 0.87 0.92
Naive Bayes 26.46 9.16 0.65 0.65 0.69 0.65 0.86
Neural Network 755.29 9.73 0.88 0.88 0.88 0.88 0.93
Random Forest 82.46 5.39 0.78 0.78 0.78 0.78 0.87
SVM 537.78 153.81 0.56 0.58 0.67 0.56 0.85
Stacking 3784 5.10 0.80 0.78 0.82 0.8 0.84
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Table 8. 299x299 of Chest X-ray image sizes
. Performance measurements
Al Train time (s)  Test time (s)  C4 Fl Prec  Recall  Spec
AdaBoost 595.71 5.20 0.69 0.69 0.69 0.69 0.84
DecisionTree 762.24 0.09 0.71 0.71 0.71 0.71 0.85
Gradient Boosting 19709.56 8.51 0.84 0.84 0.84 0.84 0.90
k-Nearest Neighbor 10.17 77.5 0.82 0.82 0.82 0.82 0.88
Logistic Regression 7484.95 5.05 0.87 0.87 0.87 0.87 0.93
Naive Bayes 26.67 7.94 0.65 0.66 0.69 0.65 0.86
Neural Network 748.23 9.68 0.87 0.87 0.87 0.87 0.92
Random Forest 81.78 5.84 0.79 0.78 0.79 0.79 0.87
SVM 525.85 149.08 0.63 0.64 0.70 0.63 0.86
Stacking 37317.35 5.60 0.79 0.77 0.81 0.79 0.83
Table 9. 256x256 of Chest X-ray image sizes
X Performance measurements
e Train time () Testtime(s)  CA Fl Prec Recall Spec
AdaBoost 607.68 5.09 0.69 0.69 0.69 0.69 0.84
DecisionTree 762.81 0.09 0.71 0.71 0.71 0.71 0.85
Gradient Boosting 19612.05 8.53 0.84 0.84 0.84 0.84 0.90
k-Nearest Neighbor 10.16 79.66 0.82 0.82 0.82 0.82 0.88
Logistic Regression 7438.57 5.47 0.87 0.87 0.87 0.87 0.92
Naive Bayes 25.67 6.64 0.65 0.65 0.69 0.65 0.86
Neural Network 790.57 9.89 0.87 0.87 0.87 0.87 0.92
Random Forest 80.85 5.87 0.79 0.78 0.78 0.79 0.87
SVM 528.22 153.46 0.62 0.64 0.69 0.65 0.86
Stacking 37287.79 5.32 0.77 0.74 0.80 0.77 0.81
Table 10. 128x128 of Chest X-ray image sizes
. Performance measurements
Algorithms Train time (s)  Test time (s) CcA F1 Prec Recall Spec
AdaBoost 561.59 5.16 0.68 0.68 0.68 0.68 0.68
DecisionTree 783.79 0.09 0.70 0.70 0.70 0.70 0.70
Gradient Boosting 19607.95 8.56 0.83 0.83 0.83 0.83 0.83
k-Nearest Neighbor 9.79 76.68 0.81 0.81 0.81 0.81 0.81
Logistic Regression 7357.06 5.18 0.86 0.86 0.86 0.86 0.86
Naive Bayes 25.93 6.76 0.63 0.64 0.68 0.63 0.63
Neural Network 834.19 10.39 0.88 0.88 0.88 0.88 0.88
Random Forest 78.83 5.31 0.77 0.77 0.77 0.77 0.77
SVM 532.35 153.05 0.58 0.60 0.67 0.58 0.58
Stacking 36207.23 7.62 0.80 0.79 0.83 0.80 0.80
Table 11. 64x64 of Chest X-ray image sizes
. Performance measurements
Algorithms Train time (s) Test time (s) CA F1 Prec Recall Spec
AdaBoost 531.18 5.58 0.67 0.67 0.67 0.67 0.83
DecisionTree 815.64 0.10 0.69 0.69 0.69 0.69 0.84
Gradient Boosting 19863.64 9.51 0.82 0.82 0.82 0.82 0.88
k-Nearest Neighbor 9.75 78.30 0.80 0.80 0.80 0.80 0.87
Logistic Regression 7624.01 5.16 0.85 0.85 0.85 0.85 0.91
Naive Bayes 27.18 7.60 0.61 0.62 0.67 0.61 0.85
Neural Network 1008.36 10.48 0.86 0.86 0.86 0.86 0.92
Random Forest 77.19 5.80 0.77 0.76 0.77 0.77 0.86
SVM 540.69 156.23 0.52 0.55 0.64 0.52 0.83
Stacking 3807532 5.14 076 074 079 076  0.80
- |
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Table 12. 32x32 of Chest X-ray image sizes

Performance measurements

Altgoritmog Train time (s) Test time (s) cA F1 Prec Recall Spec
AdaBoost 455.03 6.32 0.65 0.65 0.65 0.65 0.82
DecisionTree 851.42 0.22 0.67 0.67 0.67 0.67 0.83
Gradient Boosting 26197.50 8.80 0.79 0.79 0.79 0.79 0.87
k-Nearest Neighbor 9.81 77.15 0.77 0.77 0.77 0.77 0.85
Logistic Regression 7884.34 5.19 0.82 0.82 0.82 0.82 0.90
Naive Bayes 26.77 6.91 0.61 0.61 0.63 0.61 0.83
Neural Network 1059.16 11.20 0.83 0.83 0.83 0.83 0.91
Random Forest 72.99 5.51 0.75 0.74 0.75 0.75 0.85
SVM 528.20 154.98 0.42 0.43 0.52 0.42 0.79
Stacking 50798.59 5.29 0.74 0.71 0.78 0.74 0.78

3.4. Discussion

To determine the most suitable chest X-ray image size for use in the machine learning process for
developing a pneumonia infection prediction model. There are mainly two goals to consider: the learning
efficiency of each algorithm and the time required to train and test to evaluate the model. Gradient
boosting, random forest, decision tree, support vector machine, AdaBoost, neural network, logistic
regression, k-nearest neighbors, naive bays, and stacking are some of the most common machine learning
methods used in developing models. The learning efficiency metrics were compared to the classification
accuracy (CA), F-1, precision (Prec), and recall. The time efficiency of the prediction model was
measured by the time it took to train and test the various models.

3.4.1. Impact of Image size on Neural Network Performance for Chest X-ray image Prediction

The progress of machine learning methods has greatly enhanced the precision and effectiveness of
predictive models in analyzing medical images. In this research, we assessed the efficacy of multiple
algorithms; however, the artificial neural network algorithm has displayed the most tremendous
significance for classifying chest X-ray images, as indicated in Tables 4-12. The algorithm attained an
average accuracy of 87.00%, showcasing its reliability in distinguishing between various medical
conditions. This achievement is due to the model’s capacity to learn intricate patterns in chest X-ray
data accurately. Nevertheless, its effectiveness is affected by various factors, including the complexity of
the neural network, design decisions (e.g., convolutional layers for handling images), and optimization
methods like backpropagation, dropout, and regularization. These factors are essential for improving the
model's ability to extract features and its overall predictive effectiveness.

A primary goal of this research was to assess how image size affects the learning efficiency of neural
networks. The experimental findings show a notable decrease in model performance when the image
resolution is greatly lowered. In particular, when the input dimension was reduced to 32x32 pixels, the
model's accuracy fell to 83%, as indicated in Table 12. This decline in precision is probably caused by
the loss of essential visual elements, which hinders the model’s ability to distinguish between medical
conditions accurately. Since neural networks depend on intricate image representations for accurate
classification, reduced resolutions restrict the model's ability to identify critical diagnostic characteristics.
On the other hand, enhancing the image resolution retains additional essential details, allowing the
model to examine and learn more efficiently. For instance, when the image size was enlarged, the
algorithm's accuracy improved to 88%, as indicated in Tables 4-12, demonstrating that higher
resolutions contribute to better feature extraction and classification accuracy. Despite the overall positive
correlation between image size and model performance, the findings reveal a point of diminishing
returns. While increasing resolution improves prediction accuracy to a point, extending it further past a
limit results in only slight enhancements. In particular, enlarging the image dimensions from 128x128
to 1024x1024 pixels led to minimal improvements in accuracy. This implies that after the resolution
reaches a level adequate for extracting important features, further enhancements offer minimal extra
advantage. Beyond a certain threshold, increasing resolution does not significantly improve classification
accuracy, emphasizing the importance of selecting an appropriate image size for efficient and effective
medical image analysis.
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3.4.2. Impact of Image Size on Training and Testing Time in Predictive Model for Pneumonia Chest
X-ray Classification

The system requires precision, accuracy, and optimal computational efficiency in the training and
testing phases to develop predictive models for pneumonia diagnosis effectively. A research analysis
investigates how changes in image dimensions affect the computational demands of model training and
testing activities while determining how such changes affect model implementation performance. The
experimental findings demonstrate that higher resolution settings in chest X-ray images result in longer
durations throughout the training and testing model procedures. Complex neural network architectures
are necessary for processing extensive image details in larger images. The training duration and
computational processing time grow proportionally with image size expansion. The neural network
model that processed 299x299pixel images displayed the quickest efficiency during testing and training,
lasting 748.23 seconds. The processing speed shows that improved image features can be extracted from
higher resolutions yet requires a precise balance between performance accuracy and system operation

speed.
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Fig. 3.Comparison of training and testing time trends

Decreasing picture resolution results in more straightforward features that may speed up calculations.
Lowering the image resolution reduces diagnostic accuracy because vital diagnostic factors become harder
to detect, which causes a decrease in prediction performance. Our research demonstrates that small-sized
chest X-ray images maintain prolonged training and testing durations while preventing the model from
detecting essential patterns since detail is too sparse, as illustrated in Fig. 3. The reduction in image size
provides a computational benefit. Still, it leads to losing vital medical characteristics needed for precise
classification. The research findings demonstrate that oversized or undersized images lead to longer
periods required for the training and testing process. Importantly, the results demonstrate why selecting
an appropriate image resolution matters because it balances the model's performance with efficient
computational processing. While higher resolutions enhance learning capabilities, they also demand
longer training and testing times. Meanwhile, excessively small images hinder model performance by
removing critical diagnostic details. Therefore, an optimal image size must be selected to balance
predictive accuracy and computational efficiency, ensuring effective and resource-conscious model
development for pneumonia chest X-ray classification.

Our near future work will focus on tailoring our chest X-ray machine learning models to regional
healthcare contexts, including understanding local needs, tailoring image processing techniques to the
quality of commonly available X-rays, and developing a user-friendly interface with localization and
language support. It is important to optimize the application for resource-constrained environments,
taking into account efficient computing and offline functionality. We are very aware that rapid and
comprehensive pilot testing in targeted areas will improve the validation of the application, and feedback
from local healthcare providers will guide further improvements. Comprehensive training of healthcare
professionals will ensure the system is properly functional. Continuous validation and iterative
improvement are needed to adapt the application to changing healthcare needs, ultimately improving
the diagnostics of COVID-19 and other respiratory conditions.
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4, Conclusion

This study aimed to determine the most suitable chest X-ray image size for machine-learning models
in pneumonia infection prediction by evaluating both learning efficiency and computational time.
Artificial neural networks demonstrated the highest classification accuracy among machine learning
methods, averaging 87.00%. The results indicated that image resolution significantly impacts model
performance, with lower resolutions (e.g., 32x32 pixels) reducing accuracy due to loss of essential
diagnostic features. Higher resolutions (e.g., 299x299 pixels) improved predictive capability. However,
increasing resolution beyond a certain point yielded minimal accuracy gains, highlighting the need for
an optimal balance between resolution and computational efficiency. Furthermore, the study revealed
that higher-resolution images enhance feature extraction and increase training and testing time. The
computational demands of processing larger images must be weighed against the benefits of improved
model accuracy. An optimal image size ensures efficient training and reliable classification, balancing
precision and system performance. Future work will focus on adapting the machine learning model to
regional healthcare contexts by optimizing image processing techniques, integrating localization and
language support, and ensuring resource-efficient computing. Pilot testing in target areas and continuous
feedback from healthcare professionals will enhance validation and refinement. Ultimately, this research
contributes to developing a practical and scalable pneumonia detection model, improving diagnostic
capabilities for COVID-19 and other respiratory conditions.
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