
International Journal of Advances in Intelligent Informatics ISSN 2442-6571 

Vol. 11, No. 1, February 2025, pp. 25-38  25 

       https://doi.org/10.26555/ijain.v11i1.1897     http://ijain.org         ijain@uad.ac.id  

Finding a suitable chest x-ray image size for the process of 

machine learning to build a model for predicting  

Pneumonia 

Kriengsak Yothapakdee 

a,1,*

, Yosawaj Pugtao 

b,2

, Sarawoot Charoenkhum 

c,3

, Tanunchai Boonnuk 

d,4

, 

Kreangsak Tamee 

e,5

  

a Department of Computer Science, Faculty of Science and Technology, Loei Rajabhat University, Loei, Thailand 
b Internal Medicine Department, Chumphae Hospital, Chum Phae District, Khon Kaen, Thailand 
c Hospital Director of Khok-Nong-Kae, Health Promoting Hospital of Wangsaphung District, Loei, Thailand 
d Department of Public Health, Faculty of Science and Technology, Loei Rajabhat University, Loei, Thailand 
e Department of Computer Science and Information Technology, Faculty of Science, Naresuan University, Phitsanulok, Thailand 
1 kriengsak@lru.ac.th; 2 tarmd7@gmail.com; 3 sarawoot39283@gmail.com; 4 tanunchai.boo@lru.ac.th; 5 kreangsakt@nu.ac.th 
* corresponding author 

 

1. Introduction 
Pneumonia is a severe infectious disease that affects the lower respiratory system, caused by 

inflammation of the alveoli in the lungs. The disease can be triggered by various pathogens, including 

fungi, bacteria, and viruses [1], [2]. According to the World Health Organization (WHO), pneumonia 

remains a significant global health issue, particularly in developing countries, and it contributes to a 

considerable number of deaths, especially among children under the age of five [3]. In addition to the 

unfortunate events mentioned above to emphasize the significant nature of pneumonia as a global health 

threat. The emergence of coronavirus disease 2019 (COVID-19) has also led to an increase in respiratory 

infections worldwide. The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to an 

unprecedented global public health crisis [4]. The virus primarily attacks the respiratory tract, resulting 

in acute lung injury where the alveoli fill with pus and fluid when a person has pneumonia, causing 

difficulty breathing and limiting oxygen consumption, and in severe cases, acute respiratory distress 

syndrome (ARDS), resulting in significantly increased morbidity and mortality [5].  
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 This study focused on algorithm performance and training/testing time, 

evaluating the most suitable chest X-ray image size for machine learning 

models to predict pneumonia infection. The neural network algorithm 

achieved an accuracy rate of 87.00% across different image sizes. While 

larger images generally yield better results, there is a decline in performance 

beyond a certain size. Lowering the image resolution to 32x32 pixels 

significantly reduces performance to 83.00% likely due to the loss of 

diagnostic features. Furthermore, this study emphasizes the relationship 

between image size and processing time, empirically revealing that both 

increasing and decreasing image size beyond the optimal point results in 

increased training and testing time. The performance was noted with 

299x299 pixel images completing the process in seconds. Our results 

indicate a balance between efficiency, as larger images slightly improved 

accuracy but slowed down speed, while smaller images negatively impacted 

precision and effectiveness. These findings assist in optimizing chest X-ray 

image sizes for pneumonia prediction models by weighing diagnostic 

accuracy against computational resources.  
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As the novel coronavirus disease (COVID-19) continues its global spread, researchers employ a range 

of methodologies to decipher the virus's biology and identify factors influencing its evolution and 

outbreak patterns. Phylogenetic and phylodynamic approaches are pivotal in this endeavor, enabling 

scientists to trace the virus's transmission pathways and understand its evolutionary dynamics. These 

methods involve analyzing genetic sequences from diverse SARS-CoV-2 samples worldwide, facilitating 

the reconstruction of the virus's spread, and identifying mutations that may affect transmissibility or 

virulence. The study has provided an important foundation for developing measures that the WHO has 

implemented to control the spread of COVID-19. They have used data from analyzing virus strains and 

tracking the spread of the virus in different regions. The WHO has recommended guidelines and control 

measures, including social distancing, wearing face masks, self-isolation, travel restrictions, and patient 

screening. These measures have been specifically designed to control the spread of the virus and minimize 

the risk of infection on a global scale [6]. Over the past five years, the WHO declared COVID-19 no 

longer a public health emergency of international concern (PHEIC) on May 5, 2020 [7], highlighting a 

decreased number of infections, hospitalizations, deaths, ICU admissions, and ubiquitous immunization 

against the virus [8]. However, this announcement does not mean that the world is free from 

coronavirus-2019 because new strains of the virus are constantly emerging and being discovered 

nowadays [9]. And they remain a major threat to the world's social and economic systems. A variety of 

screening techniques and diagnostic procedures provide surveillance strategies. It is essential for finding 

and isolating affected individuals, which helps to stop the spread of the virus. In addition, screening 

initiatives enable early identification of new strains, allowing rapid adjustments to immunization 

programs and public health regulations to effectively deal with problems caused by the virus. 

A chest X-ray (CXR) is a widely utilized diagnostic imaging technique that employs X-rays to 

produce detailed images of the organs within the thoracic cavity, including the lungs, heart, and ribs. 

This non-invasive procedure provides clinicians with an efficient means of detecting and evaluating 

abnormalities in these structures. It is particularly valuable in diagnosing pneumonia, a condition 

characterized by inflammation of the lung tissue, typically resulting from an infectious etiology. Chest 

X-rays are essential for identifying key indicators of pneumonia, such as pulmonary inflammation, fluid 

accumulation, and infection, which can aid in assessing the extent and severity of the condition. This 

information is crucial for guiding treatment decisions and determining the appropriate management 

course. Additionally, CXR monitors treatment progression and evaluates the patient's recovery. Recent 

clinical guidelines have recommended CXR as the initial imaging modality for patients with suspected 

pneumonia, underscoring its role in effective clinical decision-making [10]. 

Machine learning (ML) has revolutionized the analysis of medical images, particularly chest X-rays 

(CXRs), by enhancing diagnostic accuracy and efficiency. ML algorithms, especially deep learning 

models, play a critical role in automating CXR interpretation, enabling the detection of various thoracic 

conditions, including pneumonia, tuberculosis, and lung cancer. These models identify subtle patterns 

in large datasets, improving diagnostic precision. ML also reduces the workload for radiologists, allowing 

them to focus on complex cases, while promoting early detection of abnormalities and timely 

interventions that can improve patient outcomes. Recent advancements in ML, such as self-supervised 

learning models like EVA-X [11], have furthered the generalization of CXR analysis across multiple 

diseases. Additionally, the fusion of convolutional neural networks (CNNs) [12] and vision transformers 

has resulted in more accurate multi-label chest X-ray classification. These developments demonstrate 

the scalability of ML systems, enabling access to high-quality diagnostic support in settings with limited 

radiological expertise. As ML continues to evolve, it holds the potential to significantly enhance 

diagnostic capabilities, early detection, and patient care, especially in resource-constrained environments. 

However, previous studies have suggested that determining an appropriate image resolution is critical 

for improving machine learning performance in medical imaging, with higher resolution chest X-ray 

(CXR) images improving classification accuracy [13], whereas studies on tuberculosis lesion 

segmentation have shown that increasing image resolution does not always yield better results [14]. In 

our study, we look at the impact of CXR image size on the trade-off between image detail and 

computational efficiency to improve diagnostic accuracy. The findings are intended to help develop more 

efficient and resource-efficient AI-powered medical imaging applications. 
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2. Method 
We divide the research methodology into the following parts: examining the sample size and number 

of medical images in each study, and a popular machine learning algorithm for classifying different types 

of medical images. 

2.1. The Size and Amount of Medical Images 
According to the previous literature review, medical imaging has been widely used in research and 

development, with differences in the size and number of samples depending on the purpose and goals of 

each research project, as shown in Table 1. 

Table 1.  Review summary of chest X-ray image size for developing a model 

Researcher Details 
Size of images (pixel) Number of images (instances) Medical image type 

Olar et al. [15] 

Pal et al. [16] 

Baik et al. [17] 

Ukwuoma et al. [18] 

Reddy et al. [19] 

Liu and Shen [20] 

Chen et al. [21] 

Echtioui and Ayed [22] 

Abdullah et al. [23] 

Akyol [24] 

Moris et al. [25] 

Asif et al. [26] 

Shastri et al. [27] 

Hayat et al. [28] 

Alghamdi et al. [29] 

Kanjanasurat et al. [30] 

Sarp et al. [31] 

Salama et al. [32] 

Bitto et al. [33] 

Prasetyo et al. [34] 

512x512 

224x224 

512x512 

299x299 

512x512, 1024x1024 

28x28, 56x56, 112x112, 224x224 

224x224, 299x299 

224x224 

150x150 

224x224 

4892x4020, 948x1130, 2048x2048 

256x256 

224x224 

128x128, 224x224, 229x229 

256x256, 512x512, 1024x1024 

512x512 

224x224 

220x220 

224x224 

224x224 

1589 

6432 

23712 

14400 

1818 

30386 

21165 

15156 

9220 

16360 

1047 

3886 

1045 

17599 

3555 

16210 

6000 

2482 

7138 

5865 

X-ray 

X-ray 

X-ray 

X-ray 

X-ray 

X-ray 

X-ray 

X-ray 

X-ray 

X-ray 

X-ray 

X-ray 

X-ray 

X-ray 

X-ray 

X-ray 

X-ray 

CT-scan 

MRI 

X-ray 

2.2. Machine Learning Algorithms for Medical Image Classification 
In recent years, various machine learning algorithms and methodologies have been widely applied in 

medical image classification and prediction for illness analysis and diagnosis, as shown in Table 2. 

Table 2.  Examples of machine learning algorithms application in medical image classification 

Researcher Details 
Machine learning algorithms Target Medical image type 

Prince et al. [35] 

 

 

 

Decision tree, naïve Bayes, 

logistic regression, support 

vector machine, and k-nearest 

neighbors. 

COVID-19 detection from chest X-ray 

images using CLAHE-YCrCb, LBP, and 

machine learning algorithms. 

X-ray image 

 

Singh et al. [36] Support vector machine Atherosclerotic plaque classification in 

carotid ultrasound images using machine 

learning. 

Ultrasound 

Zeng et al. [37] Convolutional neural network. Detection and processing of pulmonary 

nodules in CT images. 

Computed 

Tomography 

Jiang et al. [38] Logistic regression, SVM, 

decision tree, k-NN, and 

stochastic gradient descent. 

Magnetic resonance imaging brain tumor 

image classification based on five ML 

algorithms. 

Computed 

Tomography 
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Table 2. (Cont…) 

Researcher Details 
Machine learning algorithms Target Medical image type 

Lehtonen et al. 
[39] 

 

Linear regression, lasso, 

support vector machine, ridge, 

elastic net, logistic regression, 

random forest, and extreme 

gradient boosting. 

Incremental prognostic value of downstream 

positron emission tomography (PET) 

perfusion imaging after coronary computed 

tomography angiography: a machine learning 

study. 

Positron Emission 

Tomography 

Nemoto et al. 
[40] 

 

Random forest, naïve Bayes, 

support vector machine, k-

nearest neighbors. 

Evaluation of the performance of both 

machine learning models using PET and CT 

radionics for predicting recurrence following 

lung stereotactic body radiation therapy. 

Hybrid modalities 

2.3. Machine Learning and Its Applications in Medical Imaging 
The development of machine learning techniques has greatly impacted policy-making, organizational 

transformation, and management processes in medicine, including diagnosis, nursing care, follow-up, 

and health management. This section highlights examples of machine learning applications to various 

medical image datasets widely used in medical imaging systems, as shown in Table 3. 

Table 3.  Application of machine learning algorithms in medical image analysis 

Researcher 
Details 

Objective Dataset 

Approaches to medical 

application 

Albataineh et al. [41] Diagnosing the severity of COVID-

19 from CT-scan images. 

CT-scan image Medical images 

Islam et al. [42] Using deep learning to identify 

COVID-19 and pneumonia from 

CT scan and X-ray images. 

CT-scan image, X-ray 

image 

 

UmaMaheswaran et al. [43] Early acute stroke detection using 

machine learning approach with 

Brain Computed Tomography. 

Brain Computed 

Tomography scan (Brain 

CT)  

 

Anantharajan et al. [44] MRI brain tumor detection using 

deep learning and machine learning 

approaches. 

Magnetic Resonant 

Imaging (MRI) 

 

 

Morani et al. [45] COVID-19 detection using CT 

images 

CT-scan image  

Chaw et al. [46] 

 

The accuracy of machine learning 

algorithms in predicting shock risk 

in dengue patients. 

Physiological data of 

patients 

Predictive analytics 

Yang et al. [47] Machine learning application in 

personalised lung cancer recurrence 

and survivability prediction. 

The Cancer Genome 

Atlas (TCGA) 

Personalized medicine 

Barber et al.[48] Natural language processing with 

machine learning to predict 

outcomes after ovarian cancer 

surgery. 

CT-scan image Natural language 

processing 

Ala and Goli [49] Assigning patients to the operating 

room based on fairness policy using 

machine learning. 

Room data Operational  efficiency 

Kavitha et al. [50] Early-stage Alzheimer’s disease 

prediction using machine learning 

models. 

Magnetic Resonant 

Imaging (MRI) 

Genomics and 

precision medicine 

Kadum et al. [51] Machine learning‑based 

telemedicine framework to prioritize 

remote patients. 

ECG, blood pressure Remote monitoring 

and telemedicine 
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3. Results and Discussion 
This section presents the results obtained from the research concept and framework shown in Fig. 1 

and the datasets used in the study. Importantly, the research process and methodology were validated by 

Loei Rajabhat University's Research Ethics Committee (LRUREC No. H 009/2566).  

3.1. Chest X-ray Image Processing and Model Development 
3.1.1. Collect chest X-ray images 

This study collected medical image datasets from four major public data repositories: Data.World, 

UCI Machine Learning Repository, Kaggle, and Reddit are popular datasets because they provide curated 

datasets for research and education. Since the chest X-ray (CXR) dataset has shown an important and 

empirical role in pneumonia screening and diagnosis, only CXR images were selected to ensure 

consistency and a comprehensive tool used clinically. The dataset includes images of pneumonia, lung 

infections, COVID-19, and healthy individuals, offering a comprehensive view of thoracic conditions. 

The images are provided in multiple formats, such as .jpg, .jpeg, and .png, to support various image 

processing and machine-learning applications. 

 

Fig. 1. Overview of the research process 

3.1.2. Image verification and selection 

Doctors and relevant officials will examine and verify all chest X-rays from the previous imaging data 

collection process for any abnormalities. After that, we will perform a computer screening of the images 

to select only those with medically acceptable completeness characteristics. The type of file used in this 

research will be in .jpg format only. 

3.1.3. Adjust the size of the images 

We plan to resize the images to 9 sizes together with the original images. The input image data for 

our machine learning process consists of images of sizes 1024x1024, 640x640, 512x512, 320x320, 

299x299, 256x256, 128x128, 64x64, and 32x32. These images were resized according to the image sizes 

shown in Table 1. An image-resizing application was used to perform this operation. After resizing the 

images, the datasets of different sizes were stored in separate folders. Each dataset was divided into 

training and testing datasets. 
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3.2. Model simulation workflows in the Orange data mining software 
In this section, we design a procedure to test the performance of machine learning algorithms on 

medical images of different sizes using the orange tools. Orange, a data mining software developed in 

1997 by researchers at the University of Ljubljana, Slovenia [52], [53], was initially implemented in C++ 

and C to support machine learning algorithms. It was later redeveloped using the Python library, 

enhancing its functionality. Orange provides machine learning and data visualization capabilities through 

an intuitive, workflow-based interface.  

According to the development team, this software is a graphical user interface focused on exploratory 

data analysis (EDA) instead of coding. Our experiment used 10 algorithms: gradient boosting, random 

forest, decision tree, support vector machine, AdaBoost, neural network, logistic regression, k-nearest 

neighbors, naive bays, and stacking, as shown in Fig. 2. 

 

Fig. 2. Simulation workflows of performance testing of learning algorithms 

3.3. Experiment results 
The primary objective of this research was to identify the optimal dimensions for chest X-ray images 

to maximize the performance of machine learning models in accurately and efficiently detecting or 

predicting pneumonia cases. The study emphasized that selecting an appropriate image size plays a critical 

role in enhancing the capability of machine learning algorithms to process medical imaging data 

effectively. This optimization ensures precise identification of pneumonia cases and facilitates timely 

diagnosis, thereby supporting healthcare professionals in making informed clinical decisions. Such 

advancements are particularly significant in mitigating the spread and impact of the disease during the 

pandemic. The evaluation of the machine learning models utilized a comprehensive set of performance 

metrics, including training time, testing time, classification accuracy, F1-score, precision, recall, and 

specificity, as detailed in Table 4-Table 12. These metrics were employed to assess the robustness and 

reliability of the models, ensuring their suitability for real-world applications in medical image analysis. 

By adopting this systematic approach, the study contributes to developing efficient diagnostic tools, 

underscoring the potential of machine learning in addressing the challenges of pandemic management. 
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Table 4.  1024x1024 of Chest X-ray image sizes 

Algorithms  
Train time (s) 

 
Test time (s) 

Performance measurements 
CA F1 Prec Recall Spec 

AdaBoost 

DecisionTree 

Gradient Boosting 

k-Nearest Neighbor 

Logistic Regression 

Naive Bayes 

Neural Network 

Random Forest 

SVM 

Stacking 

602.56 

765.13 

34099.18 

10.46 

7565.94 

26.67 

922.32 

80.28 

529.42 

37853.22 

5.35 

0.22 

8.88 

76.94 

5.11 

6.93 

13.48 

5.53 

155.13 

5.60 

0.69 

0.71 

0.84 

0.82 

0.87 

0.65 

0.88 

0.79 

0.59 

0.77 

0.69 

0.71 

0.84 

0.82 

0.87 

0.66 

0.88 

0.78 

0.61 

0.75 

0.69 

0.71 

0.84 

0.83 

0.87 

0.69 

0.88 

0.79 

0.67 

0.80 

0.69 

0.71 

0.84 

0.82 

0.87 

0.65 

0.88 

0.79 

0.59 

0.77 

0.84 

0.85 

0.90 

0.88 

0.93 

0.86 

0.93 

0.87 

0.85 

0.82 

Table 5.  640x640 of Chest X-ray image sizes 

Algorithms  
Train time (s) 

 
Test time (s) 

Performance measurements 
CA F1 Prec Recall Spec 

AdaBoost 

DecisionTree 

Gradient Boosting 

k-Nearest Neighbor 

Logistic Regression 

Naive Bayes 

Neural Network 

Random Forest 

SVM 

Stacking 

596.20 

858.82 

19891.14 

10.67 

7497.82 

25.87 

745.32 

89.22 

528.23 

49832.72 

5.40 

0.11 

8.66 

81.91 

5.50 

6.66 

10.38 

5.94 

153.62 

5.63 

0.69 

0.71 

0.84 

0.82 

0.87 

0.64 

0.88 

0.79 

0.59 

0.77 

0.69 

0.71 

0.84 

0.82 

0.87 

0.65 

0.88 

0.78 

0.61 

0.75 

0.69 

0.71 

0.84 

0.82 

0.87 

0.69 

0.88 

0.79 

0.67 

0.81 

0.69 

0.71 

0.84 

0.82 

0.87 

0.65 

0.88 

0.79 

0.59 

0.77 

0.84 

0.85 

0.90 

0.88 

0.92 

0.86 

0.93 

0.87 

0.84 

0.82 

Table 6.  512x512 of Chest X-ray image sizes 

Algorithms  
Train time (s) 

 
Test time (s) 

Performance measurements 
CA F1 Prec Recall Spec 

AdaBoost 

DecisionTree 

Gradient Boosting 

k-Nearest Neighbor 

Logistic Regression 

Naive Bayes 

Neural Network 

Random Forest 

SVM 

Stacking 

757.08 

965.81 

24625.43 

12.49 

7433.73 

37.18 

807.58 

103.68 

585.65 

57606.97 

6.83 

0.23 

15.53 

92.69 

5.42 

10.18 

10.35 

6.75 

181.15 

24.25 

0.69 

0.72 

0.84 

0.82 

0.87 

0.65 

0.88 

0.78 

0.58 

0.77 

0.69 

0.72 

0.84 

0.82 

0.87 

0.65 

0.88 

0.78 

0.61 

0.73 

0.69 

0.72 

0.84 

0.82 

0.87 

0.69 

0.88 

0.78 

0.68 

0.79 

0.69 

0.72 

0.84 

0.82 

0.87 

0.65 

0.88 

0.79 

0.58 

0.76 

0.84 

0.85 

0.89 

0.88 

0.93 

0.86 

0.92 

0.87 

0.85 

0.81 

Table 7.  320x320 of Chest X-ray image sizes 

Algorithms  
Train time (s) 

 
Test time (s) 

Performance measurements 
CA F1 Prec Recall Spec 

AdaBoost 

DecisionTree 

Gradient Boosting 

k-Nearest Neighbor 

Logistic Regression 

Naive Bayes 

Neural Network 

Random Forest 

SVM 

Stacking 

582.27 

765.47 

19867.69 

9.92 

7527.89 

26.46 

755.29 

82.46 

537.78 

3784 

5.12 

0.09 

8.62 

79.24 

5.07 

9.16 

9.73 

5.39 

153.81 

5.10 

0.69 

0.71 

0.84 

0.82 

0.87 

0.65 

0.88 

0.78 

0.56 

0.80 

0.69 

0.71 

0.84 

0.82 

0.87 

0.65 

0.88 

0.78 

0.58 

0.78 

0.69 

0.71 

0.84 

0.82 

0.87 

0.69 

0.88 

0.78 

0.67 

0.82 

0.69 

0.71 

0.84 

0.82 

0.87 

0.65 

0.88 

0.78 

0.56 

0.8 

0.84 

0.85 

0.9 

0.88 

0.92 

0.86 

0.93 

0.87 

0.85 

0.84 
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Table 8.  299x299 of Chest X-ray image sizes 

Algorithms  
Train time (s) 

 
Test time (s) 

Performance measurements 
CA F1 Prec Recall Spec 

AdaBoost 

DecisionTree 

Gradient Boosting 

k-Nearest Neighbor 

Logistic Regression 

Naive Bayes 

Neural Network 

Random Forest 

SVM 

Stacking 

595.71 

762.24 

19709.56 

10.17 

7484.95 

26.67 

748.23 

81.78 

525.85 

37317.35 

5.20 

0.09 

8.51 

77.5 

5.05 

7.94 

9.68 

5.84 

149.08 

5.60 

0.69 

0.71 

0.84 

0.82 

0.87 

0.65 

0.87 

0.79 

0.63 

0.79 

0.69 

0.71 

0.84 

0.82 

0.87 

0.66 

0.87 

0.78 

0.64 

0.77 

0.69 

0.71 

0.84 

0.82 

0.87 

0.69 

0.87 

0.79 

0.70 

0.81 

0.69 

0.71 

0.84 

0.82 

0.87 

0.65 

0.87 

0.79 

0.63 

0.79 

0.84 

0.85 

0.90 

0.88 

0.93 

0.86 

0.92 

0.87 

0.86 

0.83 

Table 9.  256x256 of Chest X-ray image sizes 

Algorithms  
Train time (s) 

 
Test time (s) 

Performance measurements 
CA F1 Prec Recall Spec 

AdaBoost 

DecisionTree 

Gradient Boosting 

k-Nearest Neighbor 

Logistic Regression 

Naive Bayes 

Neural Network 

Random Forest 

SVM 

Stacking 

607.68 

762.81 

19612.05 

10.16 

7438.57 

25.67 

790.57 

80.85 

528.22 

37287.79 

5.09 

0.09 

8.53 

79.66 

5.47 

6.64 

9.89 

5.87 

153.46 

5.32 

0.69 

0.71 

0.84 

0.82 

0.87 

0.65 

0.87 

0.79 

0.62 

0.77 

0.69 

0.71 

0.84 

0.82 

0.87 

0.65 

0.87 

0.78 

0.64 

0.74 

0.69 

0.71 

0.84 

0.82 

0.87 

0.69 

0.87 

0.78 

0.69 

0.80 

0.69 

0.71 

0.84 

0.82 

0.87 

0.65 

0.87 

0.79 

0.65 

0.77 

0.84 

0.85 

0.90 

0.88 

0.92 

0.86 

0.92 

0.87 

0.86 

0.81 

Table 10.  128x128 of Chest X-ray image sizes 

Algorithms  
Train time (s) 

 
Test time (s) 

Performance measurements 
CA F1 Prec Recall Spec 

AdaBoost 

DecisionTree 

Gradient Boosting 

k-Nearest Neighbor 

Logistic Regression 

Naive Bayes 

Neural Network 

Random Forest 

SVM 

Stacking 

561.59 

783.79 

19607.95 

9.79 

7357.06 

25.93 

834.19 

78.83 

532.35 

36207.23 

5.16 

0.09 

8.56 

76.68 

5.18 

6.76 

10.39 

5.31 

153.05 

7.62 

0.68 

0.70 

0.83 

0.81 

0.86 

0.63 

0.88 

0.77 

0.58 

0.80 

0.68 

0.70 

0.83 

0.81 

0.86 

0.64 

0.88 

0.77 

0.60 

0.79 

0.68 

0.70 

0.83 

0.81 

0.86 

0.68 

0.88 

0.77 

0.67 

0.83 

0.68 

0.70 

0.83 

0.81 

0.86 

0.63 

0.88 

0.77 

0.58 

0.80 

0.68 

0.70 

0.83 

0.81 

0.86 

0.63 

0.88 

0.77 

0.58 

0.80 

Table 11.  64x64 of Chest X-ray image sizes 

Algorithms  
Train time (s) 

 
Test time (s) 

Performance measurements 
CA F1 Prec Recall Spec 

AdaBoost 

DecisionTree 

Gradient Boosting 

k-Nearest Neighbor 

Logistic Regression 

Naive Bayes 

Neural Network 

Random Forest 

SVM 

Stacking 

531.18 

815.64 

19863.64 

9.75 

7624.01 

27.18 

1008.36 

77.19 

540.69 

38075.32 

5.58 

0.10 

9.51 

78.30 

5.16 

7.60 

10.48 

5.80 

156.23 

5.14 

0.67 

0.69 

0.82 

0.80 

0.85 

0.61 

0.86 

0.77 

0.52 

0.76 

0.67 

0.69 

0.82 

0.80 

0.85 

0.62 

0.86 

0.76 

0.55 

0.74 

0.67 

0.69 

0.82 

0.80 

0.85 

0.67 

0.86 

0.77 

0.64 

0.79 

0.67 

0.69 

0.82 

0.80 

0.85 

0.61 

0.86 

0.77 

0.52 

0.76 

0.83 

0.84 

0.88 

0.87 

0.91 

0.85 

0.92 

0.86 

0.83 

0.80 
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Table 12.  32x32 of Chest X-ray image sizes 

Algorithms  
Train time (s) 

 
Test time (s) 

Performance measurements 
CA F1 Prec Recall Spec 

AdaBoost 

DecisionTree 

Gradient Boosting 

k-Nearest Neighbor 

Logistic Regression 

Naive Bayes 

Neural Network 

Random Forest 

SVM 

Stacking 

455.03 

851.42 

26197.50 

9.81 

7884.34 

26.77 

1059.16 

72.99 

528.20 

50798.59 

6.32 

0.22 

8.80 

77.15 

5.19 

6.91 

11.20 

5.51 

154.98 

5.29 

0.65 

0.67 

0.79 

0.77 

0.82 

0.61 

0.83 

0.75 

0.42 

0.74 

0.65 

0.67 

0.79 

0.77 

0.82 

0.61 

0.83 

0.74 

0.43 

0.71 

0.65 

0.67 

0.79 

0.77 

0.82 

0.63 

0.83 

0.75 

0.52 

0.78 

0.65 

0.67 

0.79 

0.77 

0.82 

0.61 

0.83 

0.75 

0.42 

0.74 

0.82 

0.83 

0.87 

0.85 

0.90 

0.83 

0.91 

0.85 

0.79 

0.78 

3.4. Discussion 
To determine the most suitable chest X-ray image size for use in the machine learning process for 

developing a pneumonia infection prediction model. There are mainly two goals to consider: the learning 

efficiency of each algorithm and the time required to train and test to evaluate the model. Gradient 

boosting, random forest, decision tree, support vector machine, AdaBoost, neural network, logistic 

regression, k-nearest neighbors, naive bays, and stacking are some of the most common machine learning 

methods used in developing models. The learning efficiency metrics were compared to the classification 

accuracy (CA), F-1, precision (Prec), and recall. The time efficiency of the prediction model was 

measured by the time it took to train and test the various models. 

3.4.1. Impact of Image size on Neural Network Performance for Chest X-ray image Prediction 

The progress of machine learning methods has greatly enhanced the precision and effectiveness of 

predictive models in analyzing medical images. In this research, we assessed the efficacy of multiple 

algorithms; however, the artificial neural network algorithm has displayed the most tremendous 

significance for classifying chest X-ray images, as indicated in Tables 4–12. The algorithm attained an 

average accuracy of 87.00%, showcasing its reliability in distinguishing between various medical 

conditions. This achievement is due to the model’s capacity to learn intricate patterns in chest X-ray 

data accurately. Nevertheless, its effectiveness is affected by various factors, including the complexity of 

the neural network, design decisions (e.g., convolutional layers for handling images), and optimization 

methods like backpropagation, dropout, and regularization. These factors are essential for improving the 

model's ability to extract features and its overall predictive effectiveness. 

A primary goal of this research was to assess how image size affects the learning efficiency of neural 

networks. The experimental findings show a notable decrease in model performance when the image 

resolution is greatly lowered. In particular, when the input dimension was reduced to 32×32 pixels, the 

model's accuracy fell to 83%, as indicated in Table 12. This decline in precision is probably caused by 

the loss of essential visual elements, which hinders the model’s ability to distinguish between medical 

conditions accurately. Since neural networks depend on intricate image representations for accurate 

classification, reduced resolutions restrict the model's ability to identify critical diagnostic characteristics. 

On the other hand, enhancing the image resolution retains additional essential details, allowing the 

model to examine and learn more efficiently. For instance, when the image size was enlarged, the 

algorithm's accuracy improved to 88%, as indicated in Tables 4–12, demonstrating that higher 

resolutions contribute to better feature extraction and classification accuracy.  Despite the overall positive 

correlation between image size and model performance, the findings reveal a point of diminishing 

returns. While increasing resolution improves prediction accuracy to a point, extending it further past a 

limit results in only slight enhancements. In particular, enlarging the image dimensions from 128×128 

to 1024×1024 pixels led to minimal improvements in accuracy. This implies that after the resolution 

reaches a level adequate for extracting important features, further enhancements offer minimal extra 

advantage. Beyond a certain threshold, increasing resolution does not significantly improve classification 

accuracy, emphasizing the importance of selecting an appropriate image size for efficient and effective 

medical image analysis. 
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3.4.2. Impact of Image Size on Training and Testing Time in Predictive Model for Pneumonia Chest 
X-ray Classification 

The system requires precision, accuracy, and optimal computational efficiency in the training and 

testing phases to develop predictive models for pneumonia diagnosis effectively. A research analysis 

investigates how changes in image dimensions affect the computational demands of model training and 

testing activities while determining how such changes affect model implementation performance. The 

experimental findings demonstrate that higher resolution settings in chest X-ray images result in longer 

durations throughout the training and testing model procedures. Complex neural network architectures 

are necessary for processing extensive image details in larger images. The training duration and 

computational processing time grow proportionally with image size expansion. The neural network 

model that processed 299×299pixel images displayed the quickest efficiency during testing and training, 

lasting 748.23 seconds. The processing speed shows that improved image features can be extracted from 

higher resolutions yet requires a precise balance between performance accuracy and system operation 

speed. 

 
 

(a) Train times (Model) (b) Test time (Model) 

Fig. 3. Comparison of training and testing time trends 

Decreasing picture resolution results in more straightforward features that may speed up calculations. 

Lowering the image resolution reduces diagnostic accuracy because vital diagnostic factors become harder 

to detect, which causes a decrease in prediction performance. Our research demonstrates that small-sized 

chest X-ray images maintain prolonged training and testing durations while preventing the model from 

detecting essential patterns since detail is too sparse, as illustrated in Fig. 3. The reduction in image size 

provides a computational benefit. Still, it leads to losing vital medical characteristics needed for precise 

classification.  The research findings demonstrate that oversized or undersized images lead to longer 

periods required for the training and testing process. Importantly, the results demonstrate why selecting 

an appropriate image resolution matters because it balances the model's performance with efficient 

computational processing. While higher resolutions enhance learning capabilities, they also demand 

longer training and testing times. Meanwhile, excessively small images hinder model performance by 

removing critical diagnostic details. Therefore, an optimal image size must be selected to balance 

predictive accuracy and computational efficiency, ensuring effective and resource-conscious model 

development for pneumonia chest X-ray classification.  

Our near future work will focus on tailoring our chest X-ray machine learning models to regional 

healthcare contexts, including understanding local needs, tailoring image processing techniques to the 

quality of commonly available X-rays, and developing a user-friendly interface with localization and 

language support. It is important to optimize the application for resource-constrained environments, 

taking into account efficient computing and offline functionality. We are very aware that rapid and 

comprehensive pilot testing in targeted areas will improve the validation of the application, and feedback 

from local healthcare providers will guide further improvements. Comprehensive training of healthcare 

professionals will ensure the system is properly functional. Continuous validation and iterative 

improvement are needed to adapt the application to changing healthcare needs, ultimately improving 

the diagnostics of COVID-19 and other respiratory conditions. 
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4. Conclusion 
This study aimed to determine the most suitable chest X-ray image size for machine-learning models 

in pneumonia infection prediction by evaluating both learning efficiency and computational time. 

Artificial neural networks demonstrated the highest classification accuracy among machine learning 

methods, averaging 87.00%. The results indicated that image resolution significantly impacts model 

performance, with lower resolutions (e.g., 32×32 pixels) reducing accuracy due to loss of essential 

diagnostic features. Higher resolutions (e.g., 299×299 pixels) improved predictive capability. However, 

increasing resolution beyond a certain point yielded minimal accuracy gains, highlighting the need for 

an optimal balance between resolution and computational efficiency.  Furthermore, the study revealed 

that higher-resolution images enhance feature extraction and increase training and testing time. The 

computational demands of processing larger images must be weighed against the benefits of improved 

model accuracy. An optimal image size ensures efficient training and reliable classification, balancing 

precision and system performance.  Future work will focus on adapting the machine learning model to 

regional healthcare contexts by optimizing image processing techniques, integrating localization and 

language support, and ensuring resource-efficient computing. Pilot testing in target areas and continuous 

feedback from healthcare professionals will enhance validation and refinement. Ultimately, this research 

contributes to developing a practical and scalable pneumonia detection model, improving diagnostic 

capabilities for COVID-19 and other respiratory conditions. 
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