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1. Introduction 
Ultrasound (US) is one of the most frequently employed medical imaging modalities, enabling real-

time visualization of internal organs and providing immediate guidance for various interventional 

procedures. Compared to other imaging techniques, the US is increasingly recognized for its 

multifunctionality, portability, and cost-effectiveness [1]. Unlike X-rays or computed tomography (CT) 

scans, the US does not involve ionizing radiation. Therefore, it is safer for patients, including pregnant 

women. Lung sonography produces distinct results based on different pathologies, as ultrasound waves 

interact uniquely with various lung tissues. In COVID-19, the lung parenchyma is compromised by 

alveolar filling with fluid, resulting in specific artifacts. Clinicians utilize LUS images to evaluate patients 

for pleural wall thickening and areas of lung congestion, which are characteristic of pneumonia. 
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 To advance the automated interpretation of lung ultrasound (LUS) data, 

multiple deep learning (DL) models have been introduced to identify LUS 

patterns for differentiating COVID-19, Pneumonia, and Normal cases. 

While these models have generally yielded promising outcomes, they have 

encountered challenges in accurately classifying each pattern across diverse 

cases. Therefore, this study introduces an ensemble framework that 

leverages multiple classification models, optimizing their contributions to 

the final prediction through a majority voting mechanism. After training 

seven different classification models, the three models with the highest 

accuracies were selected. The ensemble incorporates these top-performing 

models: EfficientNetV2-B0, EfficientNetV2-B2, and EfficientNetV2-B3, 

and utilizes this framework to classify patterns in LUS images. Compared 

to individual model performance, the ensemble approach significantly 

enhances classification accuracy, achieving an accuracy of 99.25% and an 

F1-score of 99%. In contrast, the standalone models attained accuracies of 

97.8%, 97.6%, and 98.1%, with F1-score of approximately 98%. This 

research highlights the potential of ensemble learning for improving the 

accuracy and robustness of automated LUS analysis, offering a practical and 

scalable solution for real-world medical diagnostics. By combining the 

strengths of multiple models, the proposed framework paves the way for 

more reliable and efficient tools to assist clinicians in diagnosing lung 

diseases.  
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Pneumonia is an inflammatory condition affecting one or both lungs, often caused by bacterial infections, 

although it can also result from viral pathogens, such as the coronavirus responsible for COVID-19 [2]. 

Pneumonia symptoms can vary widely, from mild enough to go unnoticed to severe enough to require 

hospitalization [3], [4].  

The World Health Organization (WHO) has reported that pneumonia is the primary infectious cause 

of death and child mortality worldwide. In 2019, it claimed the lives of 740,180 children under five years 

old, representing 14% of all fatalities in this category of age and a staggering 22% of deaths among 

children aged 1 to 5. In comparison, the pandemic of COVID-19 has had a significant impact, with an 

estimated 7,070,128 deaths attributed to the virus as of October 2024. The total number of confirmed 

COVID-19 cases has reached 776,546,006. Importantly, infections from various COVID-19 variants 

continue to pose a risk, highlighting ongoing public health challenges. These figures underscore the 

critical need for effective measures to combat pneumonia and COVID-19, particularly among vulnerable 

populations such as young children, to improve health outcomes worldwide [5]. Lung ultrasonography 

has become a significant bedside tool for diagnosing pneumonia, with greater sensitivity over chest 

radiography, particularly in detecting pleural effusion. Unlike chest CT, which remains the gold standard 

but is limited by high costs and significant radiation exposure, lung ultrasound provides a safer and more 

accessible alternative, especially for critically ill and unstable patients [6].  

This research introduces a highly accurate, efficient, and scalable ensemble framework for LUS image 

classification, demonstrating the potential of ensemble learning to enhance automated medical 

diagnostics and support clinical decision-making. Seven deep learning models were evaluated based on 

accuracy, computational efficiency, and training time, with EfficientNetV2-B0, B2, and B3 emerging as 

the top-performing models. A majority voting ensemble framework was then developed, combining 

predictions from these three models. The ensemble significantly outperformed individual models, 

achieving an impressive 99.25% accuracy and a 99% F1-score, demonstrating the effectiveness of 

leveraging multiple models to enhance classification accuracy and robustness. The paper is structured as 

follows: Section I includes a detailed review of the relevant literature, emphasizing recent advancements 

and the performance of DL models on existing datasets. Section II describes the proposed methodology, 

including the research framework and architectural design. Section III discusses the results and 

performance evaluation of the proposed approach, accompanied by a critical analysis. Finally, Section IV 

concludes the study, summarizing key findings and implications. 

2. Related Work 
Born et al. [7] employed a convolutional neural network (CNN) model, POCOVID-NET, for 

automatically classifying lung conditions into three groups: Normal (healthy) lungs, COVID-19, and 

Pneumonia, achieving 89% accuracy using 5-fold cross-validation. Expanding on COVID-19 

differentiation, Bahri et al. [8] applied texture analysis on LUS images to distinguish pneumonia from 

COVID-19. Similarly, Marco La Salvia et al. [9] leveraged DL models for COVID-19 and pneumonia 

classification, reporting a high F1-score of 98%. In another study, Elkhouly et al. [10] utilized the 

InceptionV1 model on LUS images, achieving an accuracy of approximately 84.3% for COVID-19 

diagnosis. Shiyao et al. [11] proposed a system leveraging transfer learning with ResNet for detecting 

COVID-19 syndrome in LUS images. Their approach demonstrated significant performance 

improvements, with junior and senior radiologists achieving F1-scores of 91.33% and 95.79% on the 

balanced dataset and 94.20% and 96.43% on the unbalanced dataset, respectively. Similar methodologies 

have been explored in related studies [12]–[14] Additionally, Subramanyam et al. [15] utilized a pre-

trained ResNet50 model specifically for the automated identification and localization of A-lines and B-

lines in LUS images, further contributing to advancements in lung ultrasound analysis. Comparable 

research efforts have been reported in the literature [16]–[20]. 

More recent studies employ ensemble mechanisms, such as the research by Dubey et al. [21] on the 

ICLUS-DB dataset that used ensemble models combining EfficientNet, ResNet, and other CNN 

architectures to classify lung patterns. The ensemble model performed better than individual models, 
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particularly in detecting pneumonia, COVID-19, and other lung pathologies. Another study by Shea et 
al. [22] explored ensemble learning using various CNN architectures such as ResNet and DenseNet for 

LUS data, enhancing prediction reliability by combining the strengths of each model in the ensemble. 

This method outperformed single models in LUS-based COVID-19 classification tasks (AUCs ≈0.9). 

The ensemble framework of Khan et al. [23] also combines RegNetX, ResNet50, and ResNet18 with 

spatial attention models, with each model's contribution to the final prediction adjusted via a weighted 

voting method. Each model's prediction is weighted according to its confidence level and overall 

performance in the predicted class. As a result, the final prediction is based on the majority class and the 

class having the most weight among the predictions. The ensemble approach outperforms individual 

models, achieving an F1-Score of 0.685.  

These studies reflect the growing trend of using ensemble techniques to improve diagnostic accuracy 

in LUS analysis, particularly for complex tasks like COVID-19 detection and differentiation between 

lung conditions. Nevertheless, adaptive ensembles or approaches involving multiple models can lead to 

substantial computational demands, particularly during inference, which is the focus of our research. 

3. Method 

3.1. Dataset 
The ultrasound dataset used in this study is the POCUS dataset [7], which is currently the most 

used in the literature for lung classification. It comprises a total of 13366 LUS images, divided as 

illustrated in Table 1, taken with a convex probe, then partitioned into 7130 images for training, 3565 

for validation, and 2671 for testing. Preprocessing image data is a critical step when working with image 

classification tasks, as proper preprocessing can enhance the performance and convergence of machine 

learning models. Here, four steps were followed 1) To balance computational efficiency across multiple 

models with varying input size requirements, images were resized to a compromise resolution of 260x260. 

2) Normalization (scaling pixel values): Neural networks perform better when the input values are within 

a small range, typically [0, 1]. 3)  Standardization ensures that the pixel values have a mean of 0 and a 

standard deviation of 1, helping the model to converge faster. 4) Data Augmentation: Artificially 

expanding the training dataset size and introducing image variations to help the model generalize better 

and prevent overfitting. 

Table 1.  Dataset description with the number of images for each class 

Class No. of Images 
COVID-19 5594 

Pneumonia 4104 

Normal 3668 

3.2. Transfer Learning 
Transfer learning (TL) is a cornerstone of modern AI, enabling faster deployment of sophisticated 

models in diverse applications. TL is a machine learning technique in which a model created for one 

task is used as an initial basis for another related task. It is especially beneficial when the dataset for the 

target job is limited or when training a DL model from scratch would be computationally expensive 

[24].  The key concepts of transfer learning include: 

• Pre-trained model: Typically involves using a model pre-trained on a huge dataset (e.g., ImageNet 

for image classification) and adapting it to a new problem. 

• Feature reuse: Early layers of deep networks learn generic features (e.g., edges, shapes), which can 

be useful across different tasks. Only the final layers, specific to the original task, may need 

modification or replacement for the new task. 

• Fine tuning: Adapting a pre-trained model to the target task by continuing training with a lower 

learning rate. Depending on the similarity between tasks, it may involve training all layers or just 

the top few layers [25]. 
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In this study, seven pre-trained models— EfficientNetV2B0, EfficientNetV2B1, EfficientNetV2B2, 

EfficientNetV2B3, InceptionV3, ResNet152V2, and InceptionResNetV2—were evaluated, and various 

hyperparameters were tested to identify the optimal configuration for classifying COVID-19, pneumonia 

and normal lungs. These specific models were chosen due to their strong performance in image 

classification tasks, architectural diversity, and proven capability to handle complex features in medical 

imaging datasets. 

3.2.1. EfficientNet v2 

EfficientNets are among the most advanced CNN architectures available. EfficientNetB0 [26] serves 

as the foundational model of the EfficientNet family, engineered to deliver high performance while 

utilizing fewer parameters and reducing computational costs compared to conventional deep learning 

models, as shown in Fig. 1. 

 

Fig. 1. Adjusting depth, width, and image resolution to generate various EfficientNet model variants [27] 

The figure illustrates different strategies for scaling CNNs, focusing on EfficientNet's compound 

scaling approach. It consists of five subfigures. 

• Baseline Model – Represents the original architecture with a fixed number of layers, channels, and 

input resolution. 

• Width Scaling – Increases the number of channels per layer, making the network wider. This allows 

the model to learn richer feature representations. 

• Depth Scaling – Adds more layers, making the network deeper. This helps capture more complex 

hierarchical features but increases computation time. 

• Resolution Scaling – Increases the input image resolution, enabling finer details to be captured and 

raising memory and processing demands. 

• Compound Scaling – Simultaneously scales depth, width, and resolution in a balanced manner, 

optimizing performance while maintaining efficiency. 

EfficientNetV2 models improve accuracy while reducing training time and inference latency by 

combining compound scaling (adjusting width, depth, and resolution) with neural architecture search. 

Incorporating Fused-MBConv blocks, they achieve up to 6.8× smaller sizes than prior models. Variants 

(B0–B3) differ in depth (layers), width (channels), and resolution, balancing complexity and accuracy. 

While deeper models capture richer features, they demand more computation. Compound scaling 

optimizes efficiency, but increasing model size raises resource requirements, including trainable 

parameters and FLOPs, as shown in Table 2 [28]. 



ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 147 

 Vol. 11, No. 1, February 2025, pp. 143-156 

 

 Morsy et al. (A deep learning ensemble framework for robust classification of lung ultrasound patterns…) 

Table 2.  EfficientNetV2 performance results on ImageNet 

Model Top-1 Acc.  Parameters (M) FLOPs (B) 
V2-B0 78.7% 7.4 0.7 

V2-B1 79.8% 8.1 1.2 

V2-B3 82.1% 14 3.0 

 

3.2.2. InceptionV3 

InceptionV3 [29], introduced by Szegedy et al. in 2016, brought significant advancements over 

previous architectures, incorporating approximately 24 million parameters. Key innovations included 

modifications to the optimizer, loss function, batch normalization, and auxiliary layers. A pioneering 

aspect was its use of batch normalization. Furthermore, InceptionV3 employed factorization techniques, 

replacing large convolutions (like 5x5 and 7x7) with sequences of smaller 3x3 convolutions and 

asymmetric 1xN and Nx1 convolutions.  

This reduced computational cost and mitigated representational bottlenecks by lowering the 

dimensionality of layer inputs, leading to faster training and inference. Fig. 2 represents an Inception-

based architecture for processing ultrasound images. The network comprises multiple convolutional 

layers (orange) interspersed with pooling layers (gray for max pooling, blue for mean pooling) to extract 

and refine features. The architecture follows a modular structure, with repeated inception-like blocks 

(3×, 4×, and 2×), each containing multiple small convolutions to enhance feature learning efficiency. Fully 

connected layers (black) are present at the end, followed by dropout layers (dark blue) to prevent 

overfitting and a Softmax layer (yellow) for final classification.  

 

Fig. 2. Inception V3 architecture [30] 

3.2.3. ResNet152V2 

The Deep Residual Network (ResNet) architecture [31] was presented by He et al. in 2016. This 

groundbreaking work addressed the challenges of training very deep neural networks by introducing 

residual learning, which allows layers to learn residual functions with reference to the layer inputs, 

thereby facilitating the training of networks with substantially increased depth. The ResNet152V2 model 

is an advanced version of ResNet architecture and is part of the "ResNet v2" family, which improves 

upon the original ResNet by employing better training techniques and modifications to the residual 

blocks. The key feature of ResNet models is the use of residual blocks. These blocks incorporate skip 

connections (shortcuts) that facilitate the smooth flow of gradients through the network. ResNet152V2 

is an advanced deep architecture consisting of 152 layers, designed for learning highly complex features 

in data. The modifications to the original design, include. 
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• Batch Normalization (BN) and ReLU activation are applied before the convolution layers instead 

of after, as in ResNet v1. That improves the optimization by allowing the skip connections to 

propagate the identity function more effectively. 

• Each block is a bottleneck block, which reduces the computational cost. These blocks use 1x1, 3x3, 

and 1x1 convolutions [32]. 

Fig. 3 highlights the transition from the ResNet152V2 backbone (used for feature extraction) to the 

fully connected layers (used for task-specific prediction like LUS image classification into normal, 

pneumonia, or COVID-19). The architecture is adapted for a 3-class classification task, with dropout 

used to improve model generalization. 

 

Fig. 3. ResNet152V2 architecture [32] 

3.2.4. InceptionResNetV2 

The InceptionResNetV2 model [33] is a powerful and efficient CNN architecture that benefits from 

the strengths of both Inception and ResNet, achieving high accuracy with manageable computational 

requirements. It represents a major advancement in DL model design and is significantly more complex 

than the InceptionV3 architecture. Unlike InceptionV3, this network has fewer parallel towers and 

features more streamlined Inception blocks. Each convolutional layer is paired with a ReLU activation 

function and is followed by batch normalization. The design of the InceptionResNetV2 layer is illustrated 

in Fig. 4. 

 

Fig. 4. InceptionResNetV2 layer [34] 

3.3. The applied ensemble strategy 
Ensemble learning is a technique that integrates multiple models or classifiers to enhance 

performance beyond what any individual model can achieve [35]. The predictions of each model are 
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merged to form an ensemble. This approach can be divided into four primary types: bagging, boosting, 

stacking, and voting. Bagging involves training multiple base models in parallel on different subsets of 

the original dataset to reduce variance and enhance stability. In contrast, boosting train base models 

sequentially, with each new model prioritizing correcting errors made by its predecessors, ultimately 

improving overall performance. Stacking, on the other hand, employs a meta-learner model that 

aggregates the predictions of various models to make the final decision [36]. In a voting ensemble, 

multiple models make predictions, and the final output is determined by majority voting for classification 

tasks or by averaging the predictions for regression tasks [37], [38]. This study employs the majority 

voting ensemble method to combine predictions from several pre-trained models, where the ensemble 

decision is formed by individually evaluating each model's prediction. By leveraging the diverse strengths 

of multiple models, majority voting enhances predictive accuracy while reducing overfitting through 

averaging individual biases. This approach not only improves robustness against noise and outliers, 

ensuring more stable predictions, but also offers a simple, interpretable, and easy-to-implement solution 

compared to more complex ensemble techniques like stacking or boosting [39], [40]. The 

implementation of the majority voting framework involved six key stages, as illustrated in Fig. 5. 

 

Fig. 5. Workflow for ensemble classification using majority voting 

• Model Preparation: The process begins with loading the three best-performing pre-trained models, 

utilizing their saved versions for predictions. 
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• Test Data Generation: This step preprocesses the test data by applying various augmentation 

techniques such as zoom, rotation, shift, shear, and flip. A data generator is then created for efficient 

batch-wise image loading. 

• Model Predictions: Each model is iterated over, using the test data to generate predictions. The 

predicted class indices for all test samples are stored for subsequent steps. 

• Garbage Collection: After processing each model, memory is cleared to optimize RAM usage and 

prevent unnecessary resource consumption. 

• Majority Voting: Predictions from all models are aggregated for each test sample. Using the 

Counter method, the majority class is determined.  

• Ensemble Accuracy Calculation: Finally, the ensemble’s predictions are compared with the ground 

truth labels to compute the overall accuracy of the framework. This stepwise approach ensures 

computational efficiency, robustness, and improved classification accuracy while leveraging the 

strengths of multiple DL models. 

3.4. Evaluation 
The dataset was partitioned into training, validation, and test sets to evaluate model performance 

rigorously.  Training data, while useful for model development, cannot reliably assess predictive 

capability. Therefore, validation set performance provides a more accurate estimate of generalization to 

unseen data.  The final model was tested on a held-out test set following validation to determine its 

classification accuracy on entirely novel data. The metrics commonly used in classification tasks are. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

   (1) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

   (2) 

𝐹𝐹1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ×𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

=  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+ 12(𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹)

   (3) 

where: 𝑇𝑇𝑇𝑇 – True Positive, 𝑇𝑇𝑇𝑇 – True Negative, 𝐹𝐹𝐹𝐹 – False Positive, and 𝐹𝐹𝐹𝐹 – False Negative 

4. Results and Discussion 
Practically, a Python-based implementation was employed, leveraging Nvidia RTX 3060 GPU 

capabilities. In the first phase, a lung classification model was developed using a pre-trained model 

followed by a custom classifier (average pooling, three fully connected layers, and a Softmax output for 

three classes). The training utilized the Adam optimizer (learning rate 1e-4), a batch size of 64, and a 

maximum of 100 epochs, with early stopping implemented after 10 epochs of no validation loss 

improvement. A preprocessing step was done by means of input normalization and augmentations, 

including geometric transformations (zoom, rotation, shifts, shear, flips). Each of the seven models was 

evaluated independently, and the results of their accuracies are demonstrated in Fig. 6. The evaluation 

metrics include accuracies of training, validation, and testing. A callback function was employed to save 

the best model during training, using validation accuracy as the selection criterion, which is useful in 

preventing overfitting and retaining the most effective model. 

The EfficientNetV2 models displayed robust and consistent performance across the training, 

validation, and test datasets, with validation and test accuracies consistently exceeding 97%. Among 

these, EfficientNetV2-B1 achieved the highest test accuracy (98.32%), underscoring its superior 

generalization ability within this model family. EfficientNetV2-B3 followed closely, with a slightly lower 

test accuracy of 98.09%, maintaining strong overall performance and a balanced relationship between 

training and validation metrics. In comparison, ResNet152V2 also delivered impressive results, achieving 

one of the highest validation and test accuracies (98.50% and 97.98%, respectively), further highlighting 

its excellent generalization capabilities. Meanwhile, InceptionResNetV2 demonstrated moderate 
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effectiveness with a test accuracy of 96.67%, which was lower than both the EfficientNetV2 models and 

ResNet152V2. Lastly, InceptionV3 performed the worst out of all the models, with a test accuracy of 

96.37%.  

 

Fig. 6. Training, validation and test accuracies of the seven pre-trained models 

To select the top three models, additional criteria, such as model complexity and efficiency were 

considered. Table 3 provides a detailed comparison of the seven models, including their performance 

with regard to a number of model parameters (measuring complexity), FLOPs (computational cost), and 

training time (efficiency). These metrics were evaluated to ensure the best possible balance between 

computational efficiency and performance. 

Table 3.  Comparison of Model Complexity, Computational Cost, and Training Time for the Seven Deep 

Learning Architectures 

Model Parameters (M) FLOPs (B) Training Time (Min.) 
EfficientNetV2-B0 2.11 5.9 29.35 

EfficientNetV2-B1 2.9 6.9 53.87 

EfficientNetV2-B2 3.42 8.77 40.26 

EfficientNetV2-B3 4.72 12.9 29.35 

InceptionResNetV2 17.9 54.3 58.25 

ResNet152V2 32 58.3 61.43 

InceptionV3 7.88 21.8 72.25 

 

EfficientNetV2-B0 is highly efficient, featuring a lightweight architecture (2.11M parameters), low 

computational cost (5.9B FLOPs), and a remarkably short training time of 29.35 minutes, making it an 

excellent option for resource-constrained tasks. EfficientNetV2-B1 delivers slightly better performance 

than B0 but comes at the expense of increased training time (53.87 minutes), reducing its efficiency for 

rapid deployment scenarios. EfficientNetV2-B2 offers a balanced trade-off between computational cost 

(8.77B FLOPs) and training time (40.26 minutes), presenting a middle ground within the 

EfficientNetV2 family. EfficientNetV2-B3, despite being more computationally complex with 12.9B 

FLOPs, retains a relatively short training time of 29.35 minutes, highlighting an effective balance 

between efficiency and performance. InceptionResNetV2, with 17.9M parameters and 54.3B FLOPs, is 

significantly heavier and more resource-intensive compared to the EfficientNetV2 models, making it less 

practical for efficiency-focused applications. Similarly, ResNet152V2, while demonstrating strong 

performance, is highly resource-demanding with 32M parameters and 58.3B FLOPs, which diminishes 

its suitability for real-world deployments. Lastly, InceptionV3 stands out as the least efficient in terms 

of training time (72.25 minutes) and computational cost (21.8B FLOPs), making it less competitive in 

scenarios requiring both performance and efficiency. Based on these results, the top three models 

selected were. 
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• EfficientNetV2-B0: Best choice for its exceptional computational efficiency and minimal training 

time while maintaining strong performance. 

• EfficientNetV2-B3: A well-rounded model with a good trade-off between computational cost and 

training time, offering strong results. 

• EfficientNetV2-B2: Offers a balance between model complexity and computational cost, slightly 

heavier than B0 but still efficient. 

These models are chosen for their high accuracy and efficiency, making them ideal for scalable, 

resource-constrained applications. In the second phase, an ensemble of the three models was developed 

using majority voting, combining their predictions to enhance overall accuracy and robustness. It 

evaluates each model individually on the test dataset and uses the predictions of each model to form an 

ensemble decision. Fig. 7 presents the ensemble framework. In cases of a tie, EfficientNetB3 (the model 

having the best test accuracy) is utilized as the tie-breaker. 

 

Fig. 7. Majority voting ensemble for lung ultrasound image classification 

Fig. 8. A compares test dataset performance (accuracy, precision, F1-score) for three EfficientNetV2 

models (B0, B2, B3) and the ensemble. Individually, EfficientNetV2-B3 exhibited the highest accuracy 

(98.09%), while B0 and B2 showed slightly lower, but still strong, performance (97.79% and 97.64%, 

respectively). All three models achieved near-perfect F1-score and precision (around 98%). Notably, the 

ensemble method significantly outperformed each model, achieving 99.25% accuracy and a 99% F1-

score and precision. This improvement highlights the effectiveness of the majority voting ensemble in 

mitigating individual model limitations and improving overall classification accuracy and robustness. 

Although EfficientNetV2-B3 was the best-performing single model, the substantial performance gain 

from the ensemble demonstrates its value in enhancing the reliability of the classification system. The 

confusion matrix, shown in Fig. 8.b, shows excellent performance of the ensemble model on the three-

class classification problem (Normal, Pneumonia, Covid). It strongly suggests that the model exhibits 

high accuracy and precision in classifying ultrasound images. Also, the very low number of 

misclassifications in each category indicates a robust and reliable model. 

A further comparison with individual models in terms of model complexity and efficiency appears 

that the ensemble combines models but remains computationally manageable, as its parameter count 

(10.25M) is modest compared to larger standalone models like ResNet152V2 (~32M parameters). This 

indicates that the ensemble uses only the most efficient models without unnecessary complexity. Also, 

at 25.7B FLOPs, the ensemble is computationally heavier than EfficientNetV2-B0 (5.9B) or B3 (12.9B) 

but achieves significantly higher accuracy (99.25% compared to B3's 98.09%). The increased 

computation is justified by the substantial improvement in results. With an execution time of 1.20 

minutes on a test dataset, the ensemble offers a practical balance of performance and speed, making it 

suitable for scalable applications such as medical diagnostics, where time efficiency is important. 
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Nevertheless, the encouraging outcomes of this study have some limitations. First, the comprehensive 

dataset might not adequately represent the diversity of LUS images encountered in real-world clinical 

practice. Variations in image quality, acquisition techniques, and patient demographics could affect 

model generalizability. Second, the ensemble framework, while highly accurate, requires the deployment 

of multiple models, which may increase computational overhead in some scenarios. Finally, the study 

focused on three specific lung conditions (Normal, Pneumonia, and COVID-19), and the framework’s 

performance on other lung diseases or multi-label classification tasks remains unexplored. 

  

Fig. 8. Performance metrics: a) Comparison of individual EfficientNetV2 models and the ensemble model based 

on Accuracy, Precision, and F1-score, b) The confusion matrix for the ensemble model 

5. Conclusion 
This study investigated the application of an ensemble learning approach, specifically majority voting, 

to improve the accuracy of lung disease classification using LUS images. Three EfficientNetV2 models 

(B0, B2, and B3) were selected for their balance of performance and efficiency.  The individual model 

evaluation revealed strong performance, with EfficientNetV2-B3 demonstrating the highest accuracy 

(98.09%). However, the ensemble method significantly outperformed all individual models, achieving a 

remarkable 99.25% accuracy, as shown by the confusion matrix and detailed evaluation metrics. This 

substantial improvement underscores the power of integrating multiple models to leverage their 

strengths and minimize weaknesses.  The ensemble's computational efficiency, with a parameter count 

significantly lower than some larger models and a reasonable inference time, makes it a practical and 

scalable solution for real-world applications in medical diagnostics, where fast and accurate classification 

is crucial.  Future work could explore expanding the ensemble to include a more diverse set of models 

or investigating alternative ensemble methods to enhance performance further. The findings suggest 

that ensemble learning offers a valuable strategy for enhancing the robustness and accuracy of automated 

lung disease diagnosis using ultrasound imaging. 
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