International Journal of Advances in Intelligent Informatics

ISSN 2442-6571

Vol. 1, No. 1, February 2025, pp. 143-156 143
A deep learning ensemble framework for robust )
classification of lung ultrasound patterns: covid-19, Greck for

pneumonia, and normal

Shereen Morsy »', Neveen Abd-Elsalam “?, Ahmed Kandil *°, Ahmed Elbialy >4

Abou-Bakr Youssef °

@Systems and Biomedical Engineering, Cairo University, Giza, Egypt

b Al-Shorouk Academy, Cairo, Egypt

" shereen.morsy.m@eng-st.cu.edu.eg; > neveen.mahmoud.n@eng-st.cu.edu.eg; 3 ahkandil@eng1.cu.edu.eg; 4 a.elbialy@sha.edu.eg;

% aboubakryoussef51@gmail.com
* corresponding author

ARTICLE INFO

Article history

Received December 1, 2024
Revised February 24, 2025
Accepted February 28, 2025
Available online February 28, 2025

Keywords
COVID-19
Pneumonia

Deep learning
Transfer learning
Ensemble method

1. Introduction

ABSTRACT

To advance the automated interpretation of lung ultrasound (LLUS) data,
multiple deep learning (DL) models have been introduced to identify LUS
patterns for differentiating COVID-19, Pneumonia, and Normal cases.
While these models have generally yielded promising outcomes, they have
encountered challenges in accurately classifying each pattern across diverse
cases. Therefore, this study introduces an ensemble framework that
leverages multiple classification models, optimizing their contributions to
the final prediction through a majority voting mechanism. After training
seven different classification models, the three models with the highest
accuracies were selected. The ensemble incorporates these top-performing
models: EfficientNetV2-B0, EfficientNetV2-B2, and EfficientNetV2-B3,
and utilizes this framework to classify patterns in LUS images. Compared
to individual model performance, the ensemble approach significantly
enhances classification accuracy, achieving an accuracy of 99.25% and an
F1-score of 99%. In contrast, the standalone models attained accuracies of
97.8%), 97.6%, and 98.1%, with Fl-score of approximately 98%. This
research highlights the potential of ensemble learning for improving the
accuracy and robustness of automated LLUS analysis, offering a practical and
scalable solution for real-world medical diagnostics. By combining the
strengths of multiple models, the proposed framework paves the way for
more reliable and efficient tools to assist clinicians in diagnosing lung
diseases.

© 2025 The Author(s).
This is an open access article under the CC-BY-SA license.

Ultrasound (US) is one of the most frequently employed medical imaging modalities, enabling real-

time visualization of internal organs and providing immediate guidance for various interventional
procedures. Compared to other imaging techniques, the US is increasingly recognized for its
multifunctionality, portability, and cost-effectiveness [1]. Unlike X-rays or computed tomography (CT)
scans, the US does not involve ionizing radiation. Therefore, it is safer for patients, including pregnant
women. Lung sonography produces distinct results based on different pathologies, as ultrasound waves
interact uniquely with various lung tissues. In COVID-19, the lung parenchyma is compromised by
alveolar filling with fluid, resulting in specific artifacts. Clinicians utilize LUS images to evaluate patients
for pleural wall thickening and areas of lung congestion, which are characteristic of pneumonia.
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Pneumonia is an inflammatory condition affecting one or both lungs, often caused by bacterial infections,
although it can also result from viral pathogens, such as the coronavirus responsible for COVID-19 [2].
Pneumonia symptoms can vary widely, from mild enough to go unnoticed to severe enough to require
hospitalization [3], [4].

The World Health Organization (WHO) has reported that pneumonia is the primary infectious cause
of death and child mortality worldwide. In 2019, it claimed the lives of 740,180 children under five years
old, representing 14% of all fatalities in this category of age and a staggering 22% of deaths among
children aged 1 to 5. In comparison, the pandemic of COVID-19 has had a significant impact, with an
estimated 7,070,128 deaths attributed to the virus as of October 2024. The total number of confirmed
COVID-19 cases has reached 776,546,006. Importantly, infections from various COVID-19 variants
continue to pose a risk, highlighting ongoing public health challenges. These figures underscore the
critical need for effective measures to combat pneumonia and COVID-19, particularly among vulnerable
populations such as young children, to improve health outcomes worldwide [5]. Lung ultrasonography
has become a significant bedside tool for diagnosing pneumonia, with greater sensitivity over chest
radiography, particularly in detecting pleural effusion. Unlike chest CT, which remains the gold standard
but is limited by high costs and significant radiation exposure, lung ultrasound provides a safer and more
accessible alternative, especially for critically ill and unstable patients [6].

This research introduces a highly accurate, efficient, and scalable ensemble framework for LUS image
classification, demonstrating the potential of ensemble learning to enhance automated medical
diagnostics and support clinical decision-making. Seven deep learning models were evaluated based on
accuracy, computational efficiency, and training time, with EfficientNetV2-B0, B2, and B3 emerging as
the top-performing models. A majority voting ensemble framework was then developed, combining
predictions from these three models. The ensemble significantly outperformed individual models,
achieving an impressive 99.25% accuracy and a 99% Fl-score, demonstrating the effectiveness of
leveraging multiple models to enhance classification accuracy and robustness. The paper is structured as
follows: Section I includes a detailed review of the relevant literature, emphasizing recent advancements
and the performance of DL models on existing datasets. Section II describes the proposed methodology,
including the research framework and architectural design. Section III discusses the results and
performance evaluation of the proposed approach, accompanied by a critical analysis. Finally, Section IV
concludes the study, summarizing key findings and implications.

2. Related Work

Born et al. [7] employed a convolutional neural network (CNN) model, POCOVID-NET, for
automatically classifying lung conditions into three groups: Normal (healthy) lungs, COVID-19, and
Pneumonia, achieving 89% accuracy using 5-fold cross-validation. Expanding on COVID-19
differentiation, Bahri ez al. [8] applied texture analysis on LUS images to distinguish pneumonia from
COVID-19. Similarly, Marco La Salvia ez al. [9] leveraged DL models for COVID-19 and pneumonia
classification, reporting a high Fl-score of 98%. In another study, Elkhouly et al. [10] utilized the
InceptionV1 model on LUS images, achieving an accuracy of approximately 84.3% for COVID-19
diagnosis. Shiyao et al. [11] proposed a system leveraging transfer learning with ResNet for detecting
COVID-19 syndrome in LUS images. Their approach demonstrated significant performance
improvements, with junior and senior radiologists achieving F1-scores of 91.33% and 95.79% on the
balanced dataset and 94.20% and 96.43% on the unbalanced dataset, respectively. Similar methodologies
have been explored in related studies [12]-[14] Additionally, Subramanyam et al. [15] utilized a pre-
trained ResNet50 model specifically for the automated identification and localization of A-lines and B-
lines in LUS images, further contributing to advancements in lung ultrasound analysis. Comparable
research efforts have been reported in the literature [16]—[20].

More recent studies employ ensemble mechanisms, such as the research by Dubey ez al. [21] on the
ICLUS-DB dataset that used ensemble models combining EfficientNet, ResNet, and other CNN
architectures to classify lung patterns. The ensemble model performed better than individual models,
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particularly in detecting pneumonia, COVID-19, and other lung pathologies. Another study by Shea ez
al. [22] explored ensemble learning using various CNN architectures such as ResNet and DenseNet for
LUS data, enhancing prediction reliability by combining the strengths of each model in the ensemble.
This method outperformed single models in LUS-based COVID-19 classification tasks (AUCs =0.9).
The ensemble framework of Khan et al. [23] also combines RegNetX, ResNet50, and ResNet18 with
spatial attention models, with each model's contribution to the final prediction adjusted via a weighted
voting method. Each model's prediction is weighted according to its confidence level and overall
performance in the predicted class. As a result, the final prediction is based on the majority class and the
class having the most weight among the predictions. The ensemble approach outperforms individual
models, achieving an F1-Score of 0.685.

These studies reflect the growing trend of using ensemble techniques to improve diagnostic accuracy
in LUS analysis, particularly for complex tasks like COVID-19 detection and differentiation between
lung conditions. Nevertheless, adaptive ensembles or approaches involving multiple models can lead to
substantial computational demands, particularly during inference, which is the focus of our research.

3. Method

3.1. Dataset

The ultrasound dataset used in this study is the POCUS dataset [7], which is currently the most
used in the literature for lung classification. It comprises a total of 13366 LUS images, divided as
illustrated in Table 1, taken with a convex probe, then partitioned into 7130 images for training, 3565
for validation, and 2671 for testing. Preprocessing image data is a critical step when working with image
classification tasks, as proper preprocessing can enhance the performance and convergence of machine
learning models. Here, four steps were followed 1) To balance computational efficiency across multiple
models with varying input size requirements, images were resized to a compromise resolution of 260x260.
2) Normalization (scaling pixel values): Neural networks perform better when the input values are within
a small range, typically [0, 1]. 3) Standardization ensures that the pixel values have a mean of 0 and a
standard deviation of 1, helping the model to converge faster. 4) Data Augmentation: Artificially
expanding the training dataset size and introducing image variations to help the model generalize better
and prevent overfitting.

Table 1. Dataset description with the number of images for each class

Class No. of Images
COVID-19 5594
Pneumonia 4104

Normal 3668

3.2. Transfer Learning

Transfer learning (TL) is a cornerstone of modern Al, enabling faster deployment of sophisticated
models in diverse applications. TL is a machine learning technique in which a model created for one
task is used as an initial basis for another related task. It is especially beneficial when the dataset for the
target job is limited or when training a DL model from scratch would be computationally expensive
[24]. The key concepts of transfer learning include:

*  Pre-trained model: Typically involves using a model pre-trained on a huge dataset (e.g., ImageNet
for image classification) and adapting it to a new problem.

*  Feature reuse: Early layers of deep networks learn generic features (e.g., edges, shapes), which can
be useful across different tasks. Only the final layers, specific to the original task, may need
modification or replacement for the new task.

*  Fine tuning: Adapting a pre-trained model to the target task by continuing training with a lower
learning rate. Depending on the similarity between tasks, it may involve training all layers or just
the top few layers [25].

Morsy et al. (A deep learning ensemble framework for robust classification of lung ultrasound patterns...)



146 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

Vol. 11, No. 1, February 2025, pp. 143-156
|

In this study, seven pre-trained models— EfficientNetV2B0, EfficientNetV2B1, EfficientNetV2B2,
EfficientNetV2B3, InceptionV3, ResNet152V2, and InceptionResNetV2—were evaluated, and various
hyperparameters were tested to identify the optimal configuration for classifying COVID-19, pneumonia
and normal lungs. These specific models were chosen due to their strong performance in image
classification tasks, architectural diversity, and proven capability to handle complex features in medical
imaging datasets.

3.2.1. EfficientNet v2

EfficientNets are among the most advanced CNN architectures available. EfficientNetB0 [26] serves
as the foundational model of the EfficientNet family, engineered to deliver high performance while
utilizing fewer parameters and reducing computational costs compared to conventional deep learning
models, as shown in Fig. 1.
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Fig. 1. Adjusting depth, width, and image resolution to generate various EfficientNet model variants [27]

The figure illustrates different strategies for scaling CNNs, focusing on EfficientNet's compound
scaling approach. It consists of five subfigures.

*  Baseline Model — Represents the original architecture with a fixed number of layers, channels, and
input resolution.

*  Width Scaling — Increases the number of channels per layer, making the network wider. This allows
the model to learn richer feature representations.

e Depth Scaling — Adds more layers, making the network deeper. This helps capture more complex
hierarchical features but increases computation time.

*  Resolution Scaling — Increases the input image resolution, enabling finer details to be captured and
raising memory and processing demands.

*  Compound Scaling — Simultaneously scales depth, width, and resolution in a balanced manner,
optimizing performance while maintaining efficiency.

EfficientNetV2 models improve accuracy while reducing training time and inference latency by
combining compound scaling (adjusting width, depth, and resolution) with neural architecture search.
Incorporating Fused-MBConv blocks, they achieve up to 6.8x smaller sizes than prior models. Variants
(B0-B3) differ in depth (layers), width (channels), and resolution, balancing complexity and accuracy.
While deeper models capture richer features, they demand more computation. Compound scaling
optimizes efficiency, but increasing model size raises resource requirements, including trainable
parameters and FLOPs, as shown in Table 2 [28].
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Table 2. EfficientNetV2 performance results on ImageNet
Model Top-1 Acc. Parameters (M) FLOPs (B)
V2-B0O 78.7% 7.4 0.7
V2-B1 79.8% 8.1 1.2
V2-B3 82.1% 14 3.0

3.2.2. InceptionV3

InceptionV3 [29], introduced by Szegedy et al. in 2016, brought significant advancements over
previous architectures, incorporating approximately 24 million parameters. Key innovations included
modifications to the optimizer, loss function, batch normalization, and auxiliary layers. A pioneering
aspect was its use of batch normalization. Furthermore, InceptionV3 employed factorization techniques,
replacing large convolutions (like 5x5 and 7x7) with sequences of smaller 3x3 convolutions and
asymmetric 1xN and Nx1 convolutions.

This reduced computational cost and mitigated representational bottlenecks by lowering the
dimensionality of layer inputs, leading to faster training and inference. Fig. 2 represents an Inception-
based architecture for processing ultrasound images. The network comprises multiple convolutional
layers (orange) interspersed with pooling layers (gray for max pooling, blue for mean pooling) to extract
and refine features. The architecture follows a modular structure, with repeated inception-like blocks
(3x, 4x, and 2x), each containing multiple small convolutions to enhance feature learning efficiency. Fully
connected layers (black) are present at the end, followed by dropout layers (dark blue) to prevent
overfitting and a Softmax layer (yellow) for final classification.

[ ) Max Pooling Layer @ Fully Connected Layer

(] concat @ propout Layer [ ) Softmax Layer

Fig. 2.Inception V3 architecture [30]

3.2.3. ResNetl152V2

The Deep Residual Network (ResNet) architecture [31] was presented by He ez al. in 2016. This
groundbreaking work addressed the challenges of training very deep neural networks by introducing
residual learning, which allows layers to learn residual functions with reference to the layer inputs,
thereby facilitating the training of networks with substantially increased depth. The ResNet152V2 model
is an advanced version of ResNet architecture and is part of the "ResNet v2" family, which improves
upon the original ResNet by employing better training techniques and modifications to the residual
blocks. The key feature of ResNet models is the use of residual blocks. These blocks incorporate skip
connections (shortcuts) that facilitate the smooth flow of gradients through the network. ResNet152V2
is an advanced deep architecture consisting of 152 layers, designed for learning highly complex features
in data. The modifications to the original design, include.
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*  Batch Normalization (BN) and ReLU activation are applied before the convolution layers instead
of after, as in ResNet vl. That improves the optimization by allowing the skip connections to
propagate the identity function more effectively.

*  Each block is a bottleneck block, which reduces the computational cost. These blocks use 1x1, 3x3,
and 1x1 convolutions [32].

Fig. 3 highlights the transition from the ResNet152V2 backbone (used for feature extraction) to the
fully connected layers (used for task-specific prediction like LUS image classification into normal,
pneumonia, or COVID-19). The architecture is adapted for a 3-class classification task, with dropout
used to improve model generalization.
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Fig. 3.ResNet152V2 architecture [32]

3.2.4. InceptionResNetV2

The InceptionResNetV2 model [33] is a powerful and efficient CNN architecture that benefits from
the strengths of both Inception and ResNet, achieving high accuracy with manageable computational
requirements. It represents a major advancement in DL model design and is significantly more complex
than the InceptionV3 architecture. Unlike InceptionV3, this network has fewer parallel towers and
features more streamlined Inception blocks. Each convolutional layer is paired with a ReLL.U activation
function and is followed by batch normalization. The design of the InceptionResNetV2 layer is illustrated
in Fig. 4.
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Fig. 4.InceptionResNetV2 layer [34]

3.3. The applied ensemble strategy

Ensemble learning is a technique that integrates multiple models or classifiers to enhance

performance beyond what any individual model can achieve [35]. The predictions of each model are
—
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merged to form an ensemble. This approach can be divided into four primary types: bagging, boosting,
stacking, and voting. Bagging involves training multiple base models in parallel on different subsets of
the original dataset to reduce variance and enhance stability. In contrast, boosting train base models
sequentially, with each new model prioritizing correcting errors made by its predecessors, ultimately
improving overall performance. Stacking, on the other hand, employs a meta-learner model that
aggregates the predictions of various models to make the final decision [36]. In a voting ensemble,
multiple models make predictions, and the final output is determined by majority voting for classification
tasks or by averaging the predictions for regression tasks [37], [38]. This study employs the majority
voting ensemble method to combine predictions from several pre-trained models, where the ensemble
decision is formed by individually evaluating each model's prediction. By leveraging the diverse strengths
of multiple models, majority voting enhances predictive accuracy while reducing overfitting through
averaging individual biases. This approach not only improves robustness against noise and outliers,
ensuring more stable predictions, but also offers a simple, interpretable, and easy-to-implement solution
compared to more complex ensemble techniques like stacking or boosting [39], [40]. The
implementation of the majority voting framework involved six key stages, as illustrated in Fig. 5.

Model Preparation

Load EfficientNetV2-BO | ‘ Load EfficientNetV2-B2 ’ Load EfficientNetV2-B3

l

Test Data Generation

Batch-wise Loading of
Images

] :
Preprocess Test Data Applyr:«cignr{\;:\etsatmn Create Data Generator ’

Model Predictions

Loop Through Each Model

| Generate Predictions Using Store Class Indices for All
Test Data Test Samples

Garbage Collection

Clear Model from Memory |
After Prediction

Majority Voting

Collect Predictions from All Use Counter to Determine Resolve Ties |
Models ‘ Majority Class

Ensemble Accuracy Calculation

Compare Ensemble
Predictions with
Ground-Truth |

Calculate Ensemble
Accuracy

Fig. 5. Workflow for ensemble classification using majority voting

e  Model Preparation: The process begins with loading the three best-performing pre-trained models,
utilizing their saved versions for predictions.
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e Test Data Generation: This step preprocesses the test data by applying various augmentation
techniques such as zoom, rotation, shift, shear, and flip. A data generator is then created for efficient
batch-wise image loading.

e Model Predictions: Each model is iterated over, using the test data to generate predictions. The
predicted class indices for all test samples are stored for subsequent steps.

e  Garbage Collection: After processing each model, memory is cleared to optimize RAM usage and
prevent unnecessary resource consumption.

e Majority Voting: Predictions from all models are aggregated for each test sample. Using the
Counter method, the majority class is determined.

e Ensemble Accuracy Calculation: Finally, the ensemble’s predictions are compared with the ground
truth labels to compute the overall accuracy of the framework. This stepwise approach ensures
computational efficiency, robustness, and improved classification accuracy while leveraging the
strengths of multiple DL models.

3.4. Evaluation

The dataset was partitioned into training, validation, and test sets to evaluate model performance
rigorously. Training data, while useful for model development, cannot reliably assess predictive
capability. Therefore, validation set performance provides a more accurate estimate of generalization to
unseen data. The final model was tested on a held-out test set following validation to determine its
classification accuracy on entirely novel data. The metrics commonly used in classification tasks are.

.. TP

Precision = @)

TP+FP
TP+TN

Accuracy = ——— 2)

TP+TN+FP+FN
2 XPrecision XRecall TP

F1 score = — = T 3)

Precision+Recall TP+ (FP+FN)

where: TP — True Positive, TN — True Negative, FP — False Positive, and FN — False Negative

4, Results and Discussion

Practically, a Python-based implementation was employed, leveraging Nvidia RTX 3060 GPU
capabilities. In the first phase, a lung classification model was developed using a pre-trained model
followed by a custom classifier (average pooling, three fully connected layers, and a Softmax output for
three classes). The training utilized the Adam optimizer (learning rate le-4), a batch size of 64, and a
maximum of 100 epochs, with early stopping implemented after 10 epochs of no validation loss
improvement. A preprocessing step was done by means of input normalization and augmentations,
including geometric transformations (zoom, rotation, shifts, shear, flips). Each of the seven models was
evaluated independently, and the results of their accuracies are demonstrated in Fig. 6. The evaluation
metrics include accuracies of training, validation, and testing. A callback function was employed to save
the best model during training, using validation accuracy as the selection criterion, which is useful in
preventing overfitting and retaining the most effective model.

The EfficientNetV2 models displayed robust and consistent performance across the training,
validation, and test datasets, with validation and test accuracies consistently exceeding 97%. Among
these, EfficientNetV2-B1 achieved the highest test accuracy (98.32%), underscoring its superior
generalization ability within this model family. EfficientNetV2-B3 followed closely, with a slightly lower
test accuracy of 98.09%, maintaining strong overall performance and a balanced relationship between
training and validation metrics. In comparison, ResNet152V2 also delivered impressive results, achieving
one of the highest validation and test accuracies (98.50% and 97.98%, respectively), further highlighting
its excellent generalization capabilities. Meanwhile, InceptionResNetV2 demonstrated moderate
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effectiveness with a test accuracy of 96.67%, which was lower than both the EfficientNetV2 models and
ResNet152V2. Lastly, InceptionV3 performed the worst out of all the models, with a test accuracy of
96.37%.

EfficientNetV2-B2
EfficientNetV2-B1

EfficientNetV2-BO

InceptionV3 - | —
ResNet 152V |
_ InceptionResNetv2 m Test acc.
§ EfficientNetv2-83 W Val acc.
) e—, " 1"
S,
R S

90.00 92.00 94.00 96.00 98.00 100.00

Accuracy

Fig. 6. Training, validation and test accuracies of the seven pre-trained models

To select the top three models, additional criteria, such as model complexity and efficiency were
considered. Table 3 provides a detailed comparison of the seven models, including their performance
with regard to a number of model parameters (measuring complexity), FLOPs (computational cost), and
training time (efficiency). These metrics were evaluated to ensure the best possible balance between
computational efficiency and performance.

Table 3. Comparison of Model Complexity, Computational Cost, and Training Time for the Seven Deep
Learning Architectures

Model Parameters (M) FLOPs (B) Training Time (Min.)
EfficientNetV2-B0 2.11 5.9 29.35
EfficientNetV2-B1 2.9 6.9 53.87
EfficientNetV2-B2 3.42 8.77 40.26
EfficientNetV2-B3 4.72 12.9 29.35
InceptionResNetV2 17.9 54.3 58.25

ResNet152V2 32 58.3 61.43
InceptionV3 7.88 21.8 72.25

EfficientNetV2-B0 is highly efficient, featuring a lightweight architecture (2.11M parameters), low
computational cost (5.9B FLOPs), and a remarkably short training time of 29.35 minutes, making it an
excellent option for resource-constrained tasks. EfficientNetV2-B1 delivers slightly better performance
than B0 but comes at the expense of increased training time (53.87 minutes), reducing its efficiency for
rapid deployment scenarios. EfficientNetV2-B2 offers a balanced trade-oft between computational cost
(8.77B FLOPs) and training time (40.26 minutes), presenting a middle ground within the
EfficientNetV2 family. EfficientNetV2-B3, despite being more computationally complex with 12.9B
FLOPs, retains a relatively short training time of 29.35 minutes, highlighting an effective balance
between efficiency and performance. InceptionResNetV2, with 17.9M parameters and 54.3B FLOPs, is
significantly heavier and more resource-intensive compared to the EfficientNetV2 models, making it less
practical for efficiency-focused applications. Similarly, ResNet152V2, while demonstrating strong
performance, is highly resource-demanding with 32M parameters and 58.3B FLOPs, which diminishes
its suitability for real-world deployments. Lastly, InceptionV3 stands out as the least efficient in terms
of training time (72.25 minutes) and computational cost (21.8B FLOPs), making it less competitive in
scenarios requiring both performance and efficiency. Based on these results, the top three models
selected were.

E—
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*  EfficientNetV2-B0: Best choice for its exceptional computational efficiency and minimal training
time while maintaining strong performance.

*  EfficientNetV2-B3: A well-rounded model with a good trade-off between computational cost and
training time, offering strong results.

*  EfficientNetV2-B2: Offers a balance between model complexity and computational cost, slightly
heavier than B0 but still efficient.

These models are chosen for their high accuracy and efficiency, making them ideal for scalable,
resource-constrained applications. In the second phase, an ensemble of the three models was developed
using majority voting, combining their predictions to enhance overall accuracy and robustness. It
evaluates each model individually on the test dataset and uses the predictions of each model to form an
ensemble decision. Fig. 7 presents the ensemble framework. In cases of a tie, EfficientNetB3 (the model
having the best test accuracy) is utilized as the tie-breaker.

COVID-19 |

Pneumonia

Pneumonia
EfficientNet\2
B3

Classification Models Predictions

Majority

Voting

Pneumonia

raining Set
(Pneumonia, COVID-19
and Normal Lung)

Fig. 7. Majority voting ensemble for lung ultrasound image classification

Fig. 8. A compares test dataset performance (accuracy, precision, F1-score) for three EfficientNetV2
models (B0, B2, B3) and the ensemble. Individually, EfficientNetV2-B3 exhibited the highest accuracy
(98.09%), while B0 and B2 showed slightly lower, but still strong, performance (97.79% and 97.64%,
respectively). All three models achieved near-perfect F1-score and precision (around 98%). Notably, the
ensemble method significantly outperformed each model, achieving 99.25% accuracy and a 99% F1-
score and precision. This improvement highlights the effectiveness of the majority voting ensemble in
mitigating individual model limitations and improving overall classification accuracy and robustness.
Although EfficientNetV2-B3 was the best-performing single model, the substantial performance gain
from the ensemble demonstrates its value in enhancing the reliability of the classification system. The
confusion matrix, shown in Fig. 8.b, shows excellent performance of the ensemble model on the three-
class classification problem (Normal, Pneumonia, Covid). It strongly suggests that the model exhibits
high accuracy and precision in classifying ultrasound images. Also, the very low number of
misclassifications in each category indicates a robust and reliable model.

A further comparison with individual models in terms of model complexity and efficiency appears
that the ensemble combines models but remains computationally manageable, as its parameter count
(10.25M) is modest compared to larger standalone models like ResNet152V2 (-32M parameters). This
indicates that the ensemble uses only the most efficient models without unnecessary complexity. Also,
at 25.7B FLOPs, the ensemble is computationally heavier than EfficientNetV2-B0 (5.9B) or B3 (12.9B)
but achieves significantly higher accuracy (99.25% compared to B3's 98.09%). The increased
computation is justified by the substantial improvement in results. With an execution time of 1.20
minutes on a test dataset, the ensemble offers a practical balance of performance and speed, making it
suitable for scalable applications such as medical diagnostics, where time efficiency is important.
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Nevertheless, the encouraging outcomes of this study have some limitations. First, the comprehensive
dataset might not adequately represent the diversity of LUS images encountered in real-world clinical
practice. Variations in image quality, acquisition techniques, and patient demographics could affect
model generalizability. Second, the ensemble framework, while highly accurate, requires the deployment
of multiple models, which may increase computational overhead in some scenarios. Finally, the study
focused on three specific lung conditions (Normal, Pneumonia, and COVID-19), and the framework’s
performance on other lung diseases or multi-label classification tasks remains unexplored.
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Fig. 8.Performance metrics: a) Comparison of individual EfficientNetV2 models and the ensemble model based
on Accuracy, Precision, and F1-score, b) The confusion matrix for the ensemble model

5. Conclusion

This study investigated the application of an ensemble learning approach, specifically majority voting,
to improve the accuracy of lung disease classification using LUS images. Three EfficientNetV2 models
(BO, B2, and B3) were selected for their balance of performance and efficiency. The individual model
evaluation revealed strong performance, with EfficientNetV2-B3 demonstrating the highest accuracy
(98.09%). However, the ensemble method significantly outperformed all individual models, achieving a
remarkable 99.25% accuracy, as shown by the confusion matrix and detailed evaluation metrics. This
substantial improvement underscores the power of integrating multiple models to leverage their
strengths and minimize weaknesses. The ensemble's computational efficiency, with a parameter count
significantly lower than some larger models and a reasonable inference time, makes it a practical and
scalable solution for real-world applications in medical diagnostics, where fast and accurate classification
is crucial. Future work could explore expanding the ensemble to include a more diverse set of models
or investigating alternative ensemble methods to enhance performance further. The findings suggest
that ensemble learning offers a valuable strategy for enhancing the robustness and accuracy of automated
lung disease diagnosis using ultrasound imaging.
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