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1. Introduction 

In deep learning, activation function enables a deep neural model to learn, understand and perform 
a complicated task by introducing nonlinearity properties into the network. Since the rise of deep 
learning in 2012, a notable nonsaturated activation function called Rectified Linear Unit (ReLU) [1], 
[2] has shown its tremendous performance in deep learning [3]. Numerous practical works were done 
in the past have proven the effectiveness of ReLU across different application domains [4]–[8]. This 
abrupt paradigm shift in the community is mainly due to two advantages of ReLU. Firstly, the sparsity 
component in the ReLU. The sparsity arises when x < 0. Concisely, ReLU prunes the negative input by 
outputting zero and retains the positive part [9]. With the sparsity element, ReLU networks are easy to 
train which resulted in reduces the overall computational cost and substantially expedites the 
convergence speed. Secondly, ReLU less susceptible to the gradient vanishing problem. Since the 
derivative of ReLU is 1 at the identity part and 0 otherwise, thus it does not have contractive property 
as in Sigmoid or Tanh activation functions [10].  
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 Activation functions are essential for deep learning methods to learn and 
perform complex tasks such as image classification. Rectified Linear Unit 
(ReLU) has been widely used and become the default activation function 
across the deep learning community since 2012. Although ReLU has been 
popular, however, the hard zero property of the ReLU has heavily 
hindering the negative values from propagating through the network. 
Consequently, the deep neural network has not been benefited from the 
negative representations. In this work, an activation function called 
Flatten-T Swish (FTS) that leverage the benefit of the negative values is 
proposed. To verify its performance, this study evaluates FTS with ReLU 
and several recent activation functions. Each activation function is trained 
using MNIST dataset on five different deep fully connected neural 
networks (DFNNs) with depth vary from five to eight layers. For a fair 
evaluation, all DFNNs are using the same configuration settings. Based on 
the experimental results, FTS with a threshold value, T=-0.20 has the best 
overall performance. As compared with ReLU, FTS (T=-0.20) improves 
MNIST classification accuracy by 0.13%, 0.70%, 0.67%, 1.07% and 1.15% 
on wider 5 layers, slimmer 5 layers, 6 layers, 7 layers and 8 layers DFNNs 
respectively. Apart from this, the study also noticed that FTS converges 
twice as fast as ReLU. Although there are other existing activation 
functions are also evaluated, this study elects ReLU as the baseline 
activation function.  
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Despite the superiority of ReLU, the excessive amount of sparsity element introduced by ReLU 
could be harmful where it completely prevents the negative values to be propagated through the network. 
In short, ReLU treats all negative values as unimportant representation. Consequently, deep neural 
networks have not been benefited from the negative representations. In fact, several studies were done 
in the past revealing that the negative representation could benefit the network and result in better 
predictive performance [4], [11]. Since ReLU was used in deep learning, there are several variants of 
ReLU that allow the negative values to be propagated in the network were introduced. For instance, 
Leaky ReLU (LReLU) [4], Parametric ReLU (PReLU) [11], Randomized ReLU (RReLU) [9], 
Exponential linear units (ELU) [10], Gaussian Error Linear Units (GELU) [12] and Scaled Exponential 
Linear Units (SELU) [13]. 

Driven by the significance of negative representation, this paper proposes a thresholded ReLU-
Swish-like activation function called Flatten-T Swish (FTS), which allows negative values to be 
propagated in the network and improve overall performance. By looking from the other perspective, this 
newly activation function co-inherits the properties from ReLU and Swish, furthermore, with a 
threshold value T attached onto it.  

2. Method 

2.1. Flatten-T Swish (FTS) and Rectified Linear Unit (ReLU) 

Fig. 1 provides the visualization of FTS (when T at 0.00) and ReLU. From the experiments, the 
finding shows that: 1) FTS outperforms (classification improvement by 0.13%, 0.70%, 0.67%, 1.07% 
and 1.15% on wider 5 layers, slimmer 5 layers, 6 layers, 7 layers and 8 layers DFNNs respectively) ReLU 
consistently as well as other existing activation functions on deep fully connected neural networks 
(DFNNs) with various depth applied to MNIST dataset classification [14]; 2) FTS converges about 2 
times faster than ReLU. 

 

Fig. 1.  FTS (T = 0.00) vs. ReLU 

2.2. The Proposed Method: Flatted-T Swish 

As mentioned earlier, FTS contains similar properties from both ReLU and Swish, and a threshold 
T parameter is attached, which could improve the classification accuracy. Mathematically, ReLU is 
defined as [4]: 

𝑅𝑒𝐿𝑈(𝑥) = {
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

  

ReLU has introduced to tackle the issues such as gradient vanishing/exploding and squashing problems 
by the Sigmoid activation functions in deep neural networks [15]–[17]. Formally, Sigmoid activation 
function can be defined as [18]: 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒−𝑥  
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 To construct the FTS activation function, this study first amends the original ReLU function by 
multiplying its linear identity part (when x ≥ 0) with Sigmoid activation function. Where the idea can 
be simply expressed by FTS(x) = ReLU(x) * Sigmoid(x) or: 

𝐹𝑇𝑆(𝑥) = {
𝑥

1+𝑒−𝑥 , 𝑥 ≥ 0

0, 𝑥 < 0
  

With this amendment, this study has noticed that the FTS at x ≥ 0 has a similar property to a recent 
activation function introduced by Google Brain called “Swish” [19]. Fig. 2 shows the comparison of the 
shape of FTS and Swish. Swish has shown its superiority over ReLU on several deep models in image 
classification and machine translation tasks [19]. However, the derivative of Swish has a large portion of 
the nonsparse property thus probably trigger higher computational complexity. Meanwhile, FTS retains 
the hard zero property at the other side as in ReLU which eventually deactivated most of the neurons 
when during both forward and backward propagation. 

 

Fig. 2.  The comparison between FTS (before T is incorporated into the function) and Swish activation 

functions. 

 To tackle the ReLU’s hard zero problem particularly during the forward propagation, a threshold 
value T is added to the FTS. This study suggesting that the value for T is set to be less than zero in 
order to benefit the network with the representations in the negative form. Fig. 3 plots the visualization 
of the FTS function at T < 0. With T added in the function, the function will eventually return all 
negative values as T when the input value falls at x < 0 domain.  

 

Fig. 3.  The illustration of FTS at T < 0. 

Ultimately, FTS with T added is expressed as follows: 

𝐹𝑇𝑆(𝑥) = {
𝑥

1+𝑒−𝑥 + 𝑇, 𝑥 ≥ 0

𝑇, 𝑥 < 0
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 Since that the deep neural network is a composition of many differentiable functions [20], therefore, 
during the backward propagation [21], deep neural network updates its parameters (typically weights 
and biases) by simply compute its derivative (or gradient). Derivative of a function can be derived by 
using the chain rule [22]. In the case of FTS function, the chain rule is formulated as: 

𝑓(𝑥) = 𝑔(𝑥). ℎ(𝑥)  

𝑓′(𝑥) = 𝑔′(𝑥). ℎ(𝑥) + 𝑔(𝑥). ℎ′(𝑥)  

Then, FTS function is re-denoted as follows: 

𝐹𝑇𝑆(𝑥) = {
𝑓(𝑥), 𝑥 ≥ 0

𝑇, 𝑥 < 0
  

 Sigmoid function is denoted as 𝜎(𝑥) in 𝑓(𝑥) at the condition when x ≥ 0. With that, 𝑓(𝑥)  is 
expressed as follows: 

𝑓(𝑥) = 𝑥. 𝜎(𝑥) + 𝑇  

Since that T is a constant value, its derivative is simply turning to be 0 (similarly, this also applied to 
the derivative of FTS(x) during the state where x < 0). Therefore, the only term that involves in 
derivation is 𝑓(𝑥) = 𝑥. 𝜎(𝑥). Its derivative step is listed as follows: 

𝑓′(𝑥) = 1. 𝜎(𝑥) + 𝑥(1 − 𝜎(𝑥))  

𝑓′(𝑥) = 𝜎(𝑥) + 𝑥. 𝜎(𝑥) − 𝑥. 𝜎(𝑥)2  

𝑓′(𝑥) = 𝜎(𝑥) + 𝑓(𝑥) − 𝜎(𝑥). 𝑓(𝑥)  

𝑓′(𝑥) = 𝜎(𝑥) − 𝜎(𝑥). 𝑓(𝑥) + 𝑓(𝑥)  

𝑓′(𝑥) = 𝜎(𝑥)(1 − 𝑓(𝑥)) + 𝑓(𝑥)  

As a whole, the derivative of the FTS is given by: 

𝐹𝑇𝑆′(𝑥) = {
𝜎(𝑥)(1 − 𝑓(𝑥)) + 𝑓(𝑥), 𝑥 ≥ 0

0, 𝑥 < 0
  

It is worth noting that the derivative of FTS function at the positive part gives similar properties as 
derived Swish, while the negative part generates similar property as derived. This is clearly indicated that 
the FTS introduces sparsity only during the backpropagation. The derivative of FTS is shown in Fig. 4, 
while the difference between derived ReLU and derived FTS can be noticed in Fig. 5. 

 

Fig. 4.  The plot of the FTS function at T < 0 and its derivative. The derivative of FTS is denoted as FTS’ as 

shown in the plot label located on the upper-left corner. 
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Fig. 5.  The derived ReLU and derived FTS. 

3. Results and Discussion 

3.1. Deep Models and Configuration Settings 

The experiments are conducted based on the Python [23] programming language and Tensorflow 
[24], [25] is used as a computational framework for building the deep models. The entire experiment is 
executed on Ubuntu 16.04 with a GeForce GTX 1060 6GB Graphics Processing Unit (GPU) to speed 
up the training. 

Since that this study is a preliminary study on this newly propose activation function, therefore the 
experiment considers deploying the FTS on five different DFNNs with various depth from 5 to 8 layers. 
The details of the five DFNN architectures are presented in Table 1. The models are trained on 10-
classes handwritten digits image dataset known as MNIST [21] which is a commonly used benchmark 
dataset in various image processing and computer vision experiments. MNIST dataset comprises 60,000 
images for training and 10,000 images for testing. Each image is represented by 28 x 28 pixels with the 
grayscale value ranging from 0 to 255. 

For a fair evaluation, similar experiment configurations are used across the deep models. The 
experiment uses scaled uniform distribution [26] for weight initialization. This method is known as 
Xavier initialization where commonly used in deep learning [27]–[29]. The mini-batch size is set to be 
64 running on vary models with 20 epochs per training. Meanwhile, Stochastic Gradient Descent (SGD) 
[30] as the optimizer with a learning rate of 0.1 without momentum and weight decay. The dropout 
rate is set to be 50%. Following the Google Brain in [19], Batch Normalization (BN) [31] is not in used 
due to some high-level libraries turn off the scale parameter by default on some activation functions. 

Table 1.  Network architectures of five different DFNNs. 

Network models Number of hidden layer Number of neuron in each layer 
DFNN-5a 5 512-512-512-512-10 
DFNN-5 5 256-128-64-32-10 
DFNN-6 6 512-256-128-64-32-10 
DFNN-7 7 784-512-256-128-64-32-10 
DFNN-8 8 1568-784-512-256-128-64-32-10 

 

3.2. Existing Activation Functions for Comparison 

As for the performance comparison, this study compares the FTS with other six commonly used and 
recent proposed activation functions. Those existing activation functions as well as their details such as 
the parameter settings are described as follows: 

1) ReLU [32]: It was first introduced in 2000 [1] and applied in deep learning models for the first time 
in 2011 [33]. Since then, it has been chosen as the default activation function in deep learning 
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community. This study treats ReLU as the baseline activation function for performance comparison 
purpose. 

2) Leaky ReLU (LReLU) [4]: LReLU was first proposed in 2013 to address the dying ReLU problem. 
Where a small positive slope is introduced at x < 0 by multiply to as small constant α = 0.01. Do 
note that the experiment also increases the α to 0.25 to see its performance as compared to FTS. 

3) Exponential Linear Unit (ELU) [10]: ELU was introduced in 2016 which has shown its superiority 
in outperforming ReLU in images classification task. In contrast to ReLU, ELU uses exponential 
property at x < 0 to allow the activation to behave slightly like BN which resulted in better 
generalization and speed up learning. 

4) Softplus [34]: Softplus was introduced in 2000 where first applied to model the price of call options. 
Unlike most of the in-used deep learning activation functions, Softplus is a continuous and smooth 
function. 

5) Swish [19]: Swish was introduced to deep learning particularly in image classification and machine 
translation tasks by Google Brain team in 2017. In fact, it was similar to Sigmoid-weighted Linear 
Unit (SiL) [35] function which was used in reinforcement learning. It has the smooth property 
similar to Softplus. Swish uses parameter β (can either be constant or trainable) to control the 
curvature of the function. However, by following the works in [19], [36], the parameter β is fixed to 
be 1 during the experiment. 

6) Flexible ReLU (FReLU) [37]: FReLU is a recently introduced ReLU-like activation function. It 
has an exactly similar shape as ReLU, but with an additional flexible parameter b to control the 
function shifted vertically. Since the parameter b is proven to be approximately equal to -0.398 in 
[37], therefore, the experiment adopts that as the constant for b in FReLU throughout the evaluation 
process. 

 Fig. 6 shows the visualization of the activation functions. Although the main objective of the 
experiment is to evaluate the potential of FTS against the ReLU, yet this study does not rule out the 
possibility of FTS could also be outperforming other activation functions in this case of implementation. 

 

Fig. 6. Visualization of the collective activation functions. Best viewed in color. 

3.3. FTS with T = 0.00 

 The experiment first evaluates FTS with T = 0.00. Notice that the FTS (T = 0.00) has exactly similar 
hard zero property as ReLU that restrains the negative value by outputting zero for any input value that 
falls within x < 0. Yet, another part of the activation is simply the scaled of Sigmoid function which 
equivalent to the Swish activation at the state where x ≥ 0. After training the activation functions on 
DFNN-5a for 20 epochs, the results show that LReLU (α = 0.01) has the best achievement (noted 

with an asterisk*) among the existing activation functions in term of it classification test accuracy. 
Meanwhile, the experiment also observed that FTS (T = 0.00) achieves a slightly better performance 
recorded as 98.13%, which measured to be 0.02% and 0.07% higher than LReLU (α = 0.01) and ReLU 
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respectively. Table 2 shows FTS (T = 0.00) in comparison to existing activation functions in term of 
mean classification test accuracy. 

Table 2.  The mean classification test accuracy of activation functions on DFNN-5a with 20 epochs of training. 

Activation function 
Test accuracy (%) 

(Mean of 5 runs) 
ReLU 98.06 

Swish 97.97 

LReLU (α = 0.01) 98.11* 
LReLU (α = 0.25) 97.64 

Softplus 95.28 

ELU 96.96 

FReLU 98.09 
FTS (T = 0.00) 98.13 

  

Apart from that, an additional evaluation is carried out in this section by training the FTS (T = 0.00) 
and existing activation functions on a relatively smaller 5 layers networks, DFNN-5, hence the results 
are observed. The result reported in Table 3 shows that FTS (T = 0.00) outperforms ReLU by 0.05%. 
However, unfortunately, the existing activation functions such as Swish and FReLU turn out to have 
better performance than FTS (T = 0.00) by a significant margin of 0.55% and 0.50% respectively. 
Although the result of FTS seems to be less promising at this level, the experiment hypothesizes that 
by giving a slight margin of negative value for T will improve the overall performance. Therefore, the 
experiment decreases the T says by 0.05 to allow small negative representation to be captured by the 
network during the training. As hypothesized, the result shown in Table 4 reveals that FTS (T = -0.05) 
performs better than FTS (T = 0.00) with an improvement of 0.29%. This revealed that the negative 
representation could increase the overall network performance. The experiment further explores the 
FTS to discover a value for T that could generalized well across the models. 

Table 3.  The mean test accuracy of the activation functions on DFNN-5 with 20 epochs of training. 

Activation function 
Test accuracy (%) 

(Mean of 5 runs) 
ReLU 96.96 

Swish 97.65* 

LReLU (α = 0.01) 96.83 

LReLU (α = 0.25) 96.44 
Softplus 94.46 

ELU 96.52 

FReLU 97.6 

FTS (T = 0.00) 97.1 

Table 4.  The mean test accuracy comparison between FTS (T = 0.00) and FTS (T = -0.05) on DFNN-5. 

Activation function 
Test accuracy (%) 

(Mean of 5 runs) 
FTS (T = 0.00) 97.1 

FTS (T = -0.05) 97.39 

3.4.  A more generalized T 

 It is worth to notice that this experiment does not adopt any method for learning the T parameter 
or make it as a trainable parameter, though these could be the better approaches to discover a more 
accurate T. These ideas have been put as a part of continuation for this experiment in future work. Based 
on the previous works [4], [9], [11] that dealing with the ReLU zero hard property, a common trend 
shows that most of the activation functions that own negative property allow only a small fraction of 
negative value to be on it. Therefore, this experiment conducts a straightforward approach to discover a 
generalized T by decreasing it with a small fraction 0.05 on each round of evaluation across the DFNNs. 
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 Table 5 shows the results of FTS with vary of T and existing activation functions. Meanwhile, the 
numbers in “score” column report the aggregate number of times of each FTS outperforming the best 
result (noted with an asterisk*) obtained by the existing activation function across the five DFNNs. From 
the results in Table 5, apparently, FTS with T = -0.20 has the best overall performance where it 
outperforms existing activation functions in all five evaluations on different models. Hence, a 
conservative conclusion can be drawn at this stage that -0.20 can probably be considered as a generalized 
parameter for T, at least in this context.  

 As for the comparison with ReLU baseline, the experiment notice that FTS with T ranging from 
0.00 ≥ T ≥ -0.40 have basically outperformed ReLU in almost all the cases. By comparing the FTS (T = 
-0.20) with ReLU in specific, FTS (T = -0.20) improves classification accuracy by 0.13%, 0.70%, 0.67%, 
1.07% and 1.15% on DFNN-5a, DFNN-5, DFNN-6, DFNN-7 and DFNN-8 respectively. 

Table 5.  The test accuracy of FTS with vary of T and existing activation functions. The “score” column 

aggregate the number of times of each FTS outperforming the best result obtained by the existing 

activation function. 

Activation function 
Test accuracy (%) (Mean of 5 runs) 

Score 
DFNN-5a DFNN-5 DFNN-6 DFNN-7 DFNN-8 

ReLU 98.06 96.96 97.27 96.76 96.64 - 

Swish 97.97 97.65* 97.85* 97.77* 97.64* - 

LReLU (α = 0.01) 98.11* 96.85 97.17 96.66 97.02 - 

LReLU (α = 0.25) 97.64 96.44 97.15 97.30 97.35 - 

Softplus 95.28 94.46 77.43 Not 

converge 

Not 

converge 

- 

ELU 96.98 96.52 96.89 97.00 97.17 - 

FReLU 98.09 97.60 97.75 97.58 97.36 - 

FTS (T=0.00) 98.13 97.10 96.96 95.77 74.65 1 

FTS (T=-0.05) 98.16 97.39 97.51 97.37 97.31 1 

FTS (T=-0.10) 98.15 97.56 97.84 97.91 97.87 3 

FTS (T=-0.15) 98.19 97.61 97.84 97.87 97.74 3 

FTS (T=-0.20) 98.19 97.66 97.94 97.83 97.79 5 

FTS (T=-0.25) 98.12 97.68 97.83 97.88 97.54 3 

FTS (T=-0.30) 98.10 97.75 97.82 97.85 97.44 2 

FTS (T=-0.35) 98.07 97.60 97.69 97.61 97.42 0 

FTS (T=-0.40) 98.01 97.56 97.69 97.72 97.46 0 

Note: The values with asterisk (*) indicate the best results obtained by existing activation functions on respective model. While the 

values in bold indicate the results of FTS that outperformed the result noted with asterisk (*) on respective model. 

3.5. Convergence Rate 

 Apart from evaluating the performance based on the test accuracy, evaluating from the perspective 
of convergence speed could also telling how well an activation function performs. The experiment trains 
the DFNN-8 with FTS (T = -0.20) and ReLU using MNIST dataset for 20 epochs. The training and 
testing accuracy curves of both activation functions are plotted as shown in Fig. 7. Surprisingly, the 
experiment results show that FTS (T = -0.20) convergence about 2 times faster than ReLU. This again 
confirmed by the previous works [11], [19], [37] that the activation function that has a slight negative 
property at x < 0 tend to converge much faster than ReLU. 
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Fig. 7. The training and testing curves of FTS (T = -0.20) and ReLU on DFNN-8 network. Best viewed in 

0063olor. 

4. Conclusion 

In this paper, a ReLU-Swish-like activation function called Flatten-T-Swish (FTS) is presented. In 
contrast to ReLU, FTS activation function has a small threshold value T is added to allow negative 
representations to be flown through the entire network, particularly during the forward propagation. 
This property enables the network benefits from the negative representations and leads to better 
predictive performance. Meanwhile, FTS retains the sparsity property during backpropagation where its 
derivative returns zero at x < 0, which is an important element to reduce the computational complexity. 
The experiment has shown that the FTS particularly with T = -0.20 outperformed other existing 
activation functions consistently in all five DFNNs with various depth. Specifically, by comparing with 
ReLU baseline, FTS (T = -0.20) improves MNIST classification accuracy by 0.13%, 0.70%, 0.67%, 
1.07% and 1.15% on DFNN-5a, DFNN-5, DFNN-6, DFNN-7 and DFNN-8 respectively. In addition, 
the experiment also observed that FTS does speed up convergence about 2 times faster than ReLU. As 
according to the work in [10], [13], [37], this work yet again confirms the importance of negative value 
in contributing to the overall network performance. 
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