
International Journal of Advances in Intelligent Informatics ISSN 2442-6571

Vol. 4, No. 2, July 2018, pp. 76-86 76

 http://dx.doi.org/10.26555/ijain.v4i2.249 http://ijain.org ijain@uad.ac.id

Flatten-T Swish: a thresholded ReLU-Swish-like
activation function for deep learning

Hock Hung Chieng a,1,*, Noorhaniza Wahid a,2, Ong Pauline b,3, Sai Raj Kishore Perla c,3

a Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
b Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
c Department of Electronics and Communication Engineering, Institute of Engineering and Management, Kolkata, India
1 hi160029@siswa.uthm.edu.my; 2 nhaniza@uthm.edu.my; 3 ongp@uthm.edu.my; 3 sairajkishore13@gmail.com

* corresponding author

1. Introduction

In deep learning, activation function enables a deep neural model to learn, understand and perform
a complicated task by introducing nonlinearity properties into the network. Since the rise of deep
learning in 2012, a notable nonsaturated activation function called Rectified Linear Unit (ReLU) [1],
[2] has shown its tremendous performance in deep learning [3]. Numerous practical works were done
in the past have proven the effectiveness of ReLU across different application domains [4]–[8]. This
abrupt paradigm shift in the community is mainly due to two advantages of ReLU. Firstly, the sparsity
component in the ReLU. The sparsity arises when x < 0. Concisely, ReLU prunes the negative input by
outputting zero and retains the positive part [9]. With the sparsity element, ReLU networks are easy to
train which resulted in reduces the overall computational cost and substantially expedites the
convergence speed. Secondly, ReLU less susceptible to the gradient vanishing problem. Since the
derivative of ReLU is 1 at the identity part and 0 otherwise, thus it does not have contractive property
as in Sigmoid or Tanh activation functions [10].

ARTICL E INFO

ABSTRACT

Article history

Received June 30, 2018

Revised July 17, 2018

Accepted July 24, 2018

 Activation functions are essential for deep learning methods to learn and
perform complex tasks such as image classification. Rectified Linear Unit
(ReLU) has been widely used and become the default activation function
across the deep learning community since 2012. Although ReLU has been
popular, however, the hard zero property of the ReLU has heavily
hindering the negative values from propagating through the network.
Consequently, the deep neural network has not been benefited from the
negative representations. In this work, an activation function called
Flatten-T Swish (FTS) that leverage the benefit of the negative values is
proposed. To verify its performance, this study evaluates FTS with ReLU
and several recent activation functions. Each activation function is trained
using MNIST dataset on five different deep fully connected neural
networks (DFNNs) with depth vary from five to eight layers. For a fair
evaluation, all DFNNs are using the same configuration settings. Based on
the experimental results, FTS with a threshold value, T=-0.20 has the best
overall performance. As compared with ReLU, FTS (T=-0.20) improves
MNIST classification accuracy by 0.13%, 0.70%, 0.67%, 1.07% and 1.15%
on wider 5 layers, slimmer 5 layers, 6 layers, 7 layers and 8 layers DFNNs
respectively. Apart from this, the study also noticed that FTS converges
twice as fast as ReLU. Although there are other existing activation
functions are also evaluated, this study elects ReLU as the baseline
activation function.

This is an open access article under the CC–BY-SA license.

Keywords

Deep learning

Activation function

Flatten-T Swish

Fully connected neural networks

http://dx.doi.org/10.26555/ijain.v4i2.249
http://ijain.org/index.php/IJAIN/index
mailto:ijain@uad.ac.id?subject=[IJAIN]
mailto:hi160029@siswa.uthm.edu.my
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.26555/ijain.v4i2.249&domain=pdf

77 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 2, July 2018, pp. 76-86

Chieng et.al (Flatten-T Swish: a thresholded ReLU-Swish-like activation function for deep learning)

Despite the superiority of ReLU, the excessive amount of sparsity element introduced by ReLU
could be harmful where it completely prevents the negative values to be propagated through the network.
In short, ReLU treats all negative values as unimportant representation. Consequently, deep neural
networks have not been benefited from the negative representations. In fact, several studies were done
in the past revealing that the negative representation could benefit the network and result in better
predictive performance [4], [11]. Since ReLU was used in deep learning, there are several variants of
ReLU that allow the negative values to be propagated in the network were introduced. For instance,
Leaky ReLU (LReLU) [4], Parametric ReLU (PReLU) [11], Randomized ReLU (RReLU) [9],
Exponential linear units (ELU) [10], Gaussian Error Linear Units (GELU) [12] and Scaled Exponential
Linear Units (SELU) [13].

Driven by the significance of negative representation, this paper proposes a thresholded ReLU-
Swish-like activation function called Flatten-T Swish (FTS), which allows negative values to be
propagated in the network and improve overall performance. By looking from the other perspective, this
newly activation function co-inherits the properties from ReLU and Swish, furthermore, with a
threshold value T attached onto it.

2. Method

2.1. Flatten-T Swish (FTS) and Rectified Linear Unit (ReLU)

Fig. 1 provides the visualization of FTS (when T at 0.00) and ReLU. From the experiments, the
finding shows that: 1) FTS outperforms (classification improvement by 0.13%, 0.70%, 0.67%, 1.07%
and 1.15% on wider 5 layers, slimmer 5 layers, 6 layers, 7 layers and 8 layers DFNNs respectively) ReLU
consistently as well as other existing activation functions on deep fully connected neural networks
(DFNNs) with various depth applied to MNIST dataset classification [14]; 2) FTS converges about 2
times faster than ReLU.

Fig. 1. FTS (T = 0.00) vs. ReLU

2.2. The Proposed Method: Flatted-T Swish

As mentioned earlier, FTS contains similar properties from both ReLU and Swish, and a threshold
T parameter is attached, which could improve the classification accuracy. Mathematically, ReLU is
defined as [4]:

𝑅𝑒𝐿𝑈(𝑥) = {
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

ReLU has introduced to tackle the issues such as gradient vanishing/exploding and squashing problems
by the Sigmoid activation functions in deep neural networks [15]–[17]. Formally, Sigmoid activation
function can be defined as [18]:

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒−𝑥

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 78
 Vol. 4, No. 2, July 2018, pp. 76-86

 Chieng et.al (Flatten-T Swish: a thresholded ReLU-Swish-like activation function for deep learning)

 To construct the FTS activation function, this study first amends the original ReLU function by
multiplying its linear identity part (when x ≥ 0) with Sigmoid activation function. Where the idea can
be simply expressed by FTS(x) = ReLU(x) * Sigmoid(x) or:

𝐹𝑇𝑆(𝑥) = {
𝑥

1+𝑒−𝑥 , 𝑥 ≥ 0

0, 𝑥 < 0

With this amendment, this study has noticed that the FTS at x ≥ 0 has a similar property to a recent
activation function introduced by Google Brain called “Swish” [19]. Fig. 2 shows the comparison of the
shape of FTS and Swish. Swish has shown its superiority over ReLU on several deep models in image
classification and machine translation tasks [19]. However, the derivative of Swish has a large portion of
the nonsparse property thus probably trigger higher computational complexity. Meanwhile, FTS retains
the hard zero property at the other side as in ReLU which eventually deactivated most of the neurons
when during both forward and backward propagation.

Fig. 2. The comparison between FTS (before T is incorporated into the function) and Swish activation

functions.

 To tackle the ReLU’s hard zero problem particularly during the forward propagation, a threshold
value T is added to the FTS. This study suggesting that the value for T is set to be less than zero in
order to benefit the network with the representations in the negative form. Fig. 3 plots the visualization
of the FTS function at T < 0. With T added in the function, the function will eventually return all
negative values as T when the input value falls at x < 0 domain.

Fig. 3. The illustration of FTS at T < 0.

Ultimately, FTS with T added is expressed as follows:

𝐹𝑇𝑆(𝑥) = {
𝑥

1+𝑒−𝑥 + 𝑇, 𝑥 ≥ 0

𝑇, 𝑥 < 0

79 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 2, July 2018, pp. 76-86

Chieng et.al (Flatten-T Swish: a thresholded ReLU-Swish-like activation function for deep learning)

 Since that the deep neural network is a composition of many differentiable functions [20], therefore,
during the backward propagation [21], deep neural network updates its parameters (typically weights
and biases) by simply compute its derivative (or gradient). Derivative of a function can be derived by
using the chain rule [22]. In the case of FTS function, the chain rule is formulated as:

𝑓(𝑥) = 𝑔(𝑥). ℎ(𝑥)

𝑓′(𝑥) = 𝑔′(𝑥). ℎ(𝑥) + 𝑔(𝑥). ℎ′(𝑥)

Then, FTS function is re-denoted as follows:

𝐹𝑇𝑆(𝑥) = {
𝑓(𝑥), 𝑥 ≥ 0

𝑇, 𝑥 < 0

 Sigmoid function is denoted as 𝜎(𝑥) in 𝑓(𝑥) at the condition when x ≥ 0. With that, 𝑓(𝑥) is
expressed as follows:

𝑓(𝑥) = 𝑥. 𝜎(𝑥) + 𝑇

Since that T is a constant value, its derivative is simply turning to be 0 (similarly, this also applied to
the derivative of FTS(x) during the state where x < 0). Therefore, the only term that involves in
derivation is 𝑓(𝑥) = 𝑥. 𝜎(𝑥). Its derivative step is listed as follows:

𝑓′(𝑥) = 1. 𝜎(𝑥) + 𝑥(1 − 𝜎(𝑥))

𝑓′(𝑥) = 𝜎(𝑥) + 𝑥. 𝜎(𝑥) − 𝑥. 𝜎(𝑥)2

𝑓′(𝑥) = 𝜎(𝑥) + 𝑓(𝑥) − 𝜎(𝑥). 𝑓(𝑥)

𝑓′(𝑥) = 𝜎(𝑥) − 𝜎(𝑥). 𝑓(𝑥) + 𝑓(𝑥)

𝑓′(𝑥) = 𝜎(𝑥)(1 − 𝑓(𝑥)) + 𝑓(𝑥)

As a whole, the derivative of the FTS is given by:

𝐹𝑇𝑆′(𝑥) = {
𝜎(𝑥)(1 − 𝑓(𝑥)) + 𝑓(𝑥), 𝑥 ≥ 0

0, 𝑥 < 0

It is worth noting that the derivative of FTS function at the positive part gives similar properties as
derived Swish, while the negative part generates similar property as derived. This is clearly indicated that
the FTS introduces sparsity only during the backpropagation. The derivative of FTS is shown in Fig. 4,
while the difference between derived ReLU and derived FTS can be noticed in Fig. 5.

Fig. 4. The plot of the FTS function at T < 0 and its derivative. The derivative of FTS is denoted as FTS’ as

shown in the plot label located on the upper-left corner.

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 80
 Vol. 4, No. 2, July 2018, pp. 76-86

 Chieng et.al (Flatten-T Swish: a thresholded ReLU-Swish-like activation function for deep learning)

Fig. 5. The derived ReLU and derived FTS.

3. Results and Discussion

3.1. Deep Models and Configuration Settings

The experiments are conducted based on the Python [23] programming language and Tensorflow
[24], [25] is used as a computational framework for building the deep models. The entire experiment is
executed on Ubuntu 16.04 with a GeForce GTX 1060 6GB Graphics Processing Unit (GPU) to speed
up the training.

Since that this study is a preliminary study on this newly propose activation function, therefore the
experiment considers deploying the FTS on five different DFNNs with various depth from 5 to 8 layers.
The details of the five DFNN architectures are presented in Table 1. The models are trained on 10-
classes handwritten digits image dataset known as MNIST [21] which is a commonly used benchmark
dataset in various image processing and computer vision experiments. MNIST dataset comprises 60,000
images for training and 10,000 images for testing. Each image is represented by 28 x 28 pixels with the
grayscale value ranging from 0 to 255.

For a fair evaluation, similar experiment configurations are used across the deep models. The
experiment uses scaled uniform distribution [26] for weight initialization. This method is known as
Xavier initialization where commonly used in deep learning [27]–[29]. The mini-batch size is set to be
64 running on vary models with 20 epochs per training. Meanwhile, Stochastic Gradient Descent (SGD)
[30] as the optimizer with a learning rate of 0.1 without momentum and weight decay. The dropout
rate is set to be 50%. Following the Google Brain in [19], Batch Normalization (BN) [31] is not in used
due to some high-level libraries turn off the scale parameter by default on some activation functions.

Table 1. Network architectures of five different DFNNs.

Network models Number of hidden layer Number of neuron in each layer
DFNN-5a 5 512-512-512-512-10
DFNN-5 5 256-128-64-32-10
DFNN-6 6 512-256-128-64-32-10
DFNN-7 7 784-512-256-128-64-32-10
DFNN-8 8 1568-784-512-256-128-64-32-10

3.2. Existing Activation Functions for Comparison

As for the performance comparison, this study compares the FTS with other six commonly used and
recent proposed activation functions. Those existing activation functions as well as their details such as
the parameter settings are described as follows:

1) ReLU [32]: It was first introduced in 2000 [1] and applied in deep learning models for the first time
in 2011 [33]. Since then, it has been chosen as the default activation function in deep learning

81 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 2, July 2018, pp. 76-86

Chieng et.al (Flatten-T Swish: a thresholded ReLU-Swish-like activation function for deep learning)

community. This study treats ReLU as the baseline activation function for performance comparison
purpose.

2) Leaky ReLU (LReLU) [4]: LReLU was first proposed in 2013 to address the dying ReLU problem.
Where a small positive slope is introduced at x < 0 by multiply to as small constant α = 0.01. Do
note that the experiment also increases the α to 0.25 to see its performance as compared to FTS.

3) Exponential Linear Unit (ELU) [10]: ELU was introduced in 2016 which has shown its superiority
in outperforming ReLU in images classification task. In contrast to ReLU, ELU uses exponential
property at x < 0 to allow the activation to behave slightly like BN which resulted in better
generalization and speed up learning.

4) Softplus [34]: Softplus was introduced in 2000 where first applied to model the price of call options.
Unlike most of the in-used deep learning activation functions, Softplus is a continuous and smooth
function.

5) Swish [19]: Swish was introduced to deep learning particularly in image classification and machine
translation tasks by Google Brain team in 2017. In fact, it was similar to Sigmoid-weighted Linear
Unit (SiL) [35] function which was used in reinforcement learning. It has the smooth property
similar to Softplus. Swish uses parameter β (can either be constant or trainable) to control the
curvature of the function. However, by following the works in [19], [36], the parameter β is fixed to
be 1 during the experiment.

6) Flexible ReLU (FReLU) [37]: FReLU is a recently introduced ReLU-like activation function. It
has an exactly similar shape as ReLU, but with an additional flexible parameter b to control the
function shifted vertically. Since the parameter b is proven to be approximately equal to -0.398 in
[37], therefore, the experiment adopts that as the constant for b in FReLU throughout the evaluation
process.

 Fig. 6 shows the visualization of the activation functions. Although the main objective of the
experiment is to evaluate the potential of FTS against the ReLU, yet this study does not rule out the
possibility of FTS could also be outperforming other activation functions in this case of implementation.

Fig. 6. Visualization of the collective activation functions. Best viewed in color.

3.3. FTS with T = 0.00

 The experiment first evaluates FTS with T = 0.00. Notice that the FTS (T = 0.00) has exactly similar
hard zero property as ReLU that restrains the negative value by outputting zero for any input value that
falls within x < 0. Yet, another part of the activation is simply the scaled of Sigmoid function which
equivalent to the Swish activation at the state where x ≥ 0. After training the activation functions on
DFNN-5a for 20 epochs, the results show that LReLU (α = 0.01) has the best achievement (noted

with an asterisk*) among the existing activation functions in term of it classification test accuracy.
Meanwhile, the experiment also observed that FTS (T = 0.00) achieves a slightly better performance
recorded as 98.13%, which measured to be 0.02% and 0.07% higher than LReLU (α = 0.01) and ReLU

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 82
 Vol. 4, No. 2, July 2018, pp. 76-86

 Chieng et.al (Flatten-T Swish: a thresholded ReLU-Swish-like activation function for deep learning)

respectively. Table 2 shows FTS (T = 0.00) in comparison to existing activation functions in term of
mean classification test accuracy.

Table 2. The mean classification test accuracy of activation functions on DFNN-5a with 20 epochs of training.

Activation function
Test accuracy (%)

(Mean of 5 runs)
ReLU 98.06

Swish 97.97

LReLU (α = 0.01) 98.11*
LReLU (α = 0.25) 97.64

Softplus 95.28

ELU 96.96

FReLU 98.09
FTS (T = 0.00) 98.13

Apart from that, an additional evaluation is carried out in this section by training the FTS (T = 0.00)
and existing activation functions on a relatively smaller 5 layers networks, DFNN-5, hence the results
are observed. The result reported in Table 3 shows that FTS (T = 0.00) outperforms ReLU by 0.05%.
However, unfortunately, the existing activation functions such as Swish and FReLU turn out to have
better performance than FTS (T = 0.00) by a significant margin of 0.55% and 0.50% respectively.
Although the result of FTS seems to be less promising at this level, the experiment hypothesizes that
by giving a slight margin of negative value for T will improve the overall performance. Therefore, the
experiment decreases the T says by 0.05 to allow small negative representation to be captured by the
network during the training. As hypothesized, the result shown in Table 4 reveals that FTS (T = -0.05)
performs better than FTS (T = 0.00) with an improvement of 0.29%. This revealed that the negative
representation could increase the overall network performance. The experiment further explores the
FTS to discover a value for T that could generalized well across the models.

Table 3. The mean test accuracy of the activation functions on DFNN-5 with 20 epochs of training.

Activation function
Test accuracy (%)

(Mean of 5 runs)
ReLU 96.96

Swish 97.65*

LReLU (α = 0.01) 96.83

LReLU (α = 0.25) 96.44
Softplus 94.46

ELU 96.52

FReLU 97.6

FTS (T = 0.00) 97.1

Table 4. The mean test accuracy comparison between FTS (T = 0.00) and FTS (T = -0.05) on DFNN-5.

Activation function
Test accuracy (%)

(Mean of 5 runs)
FTS (T = 0.00) 97.1

FTS (T = -0.05) 97.39

3.4. A more generalized T

 It is worth to notice that this experiment does not adopt any method for learning the T parameter
or make it as a trainable parameter, though these could be the better approaches to discover a more
accurate T. These ideas have been put as a part of continuation for this experiment in future work. Based
on the previous works [4], [9], [11] that dealing with the ReLU zero hard property, a common trend
shows that most of the activation functions that own negative property allow only a small fraction of
negative value to be on it. Therefore, this experiment conducts a straightforward approach to discover a
generalized T by decreasing it with a small fraction 0.05 on each round of evaluation across the DFNNs.

83 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 2, July 2018, pp. 76-86

Chieng et.al (Flatten-T Swish: a thresholded ReLU-Swish-like activation function for deep learning)

 Table 5 shows the results of FTS with vary of T and existing activation functions. Meanwhile, the
numbers in “score” column report the aggregate number of times of each FTS outperforming the best
result (noted with an asterisk*) obtained by the existing activation function across the five DFNNs. From
the results in Table 5, apparently, FTS with T = -0.20 has the best overall performance where it
outperforms existing activation functions in all five evaluations on different models. Hence, a
conservative conclusion can be drawn at this stage that -0.20 can probably be considered as a generalized
parameter for T, at least in this context.

 As for the comparison with ReLU baseline, the experiment notice that FTS with T ranging from
0.00 ≥ T ≥ -0.40 have basically outperformed ReLU in almost all the cases. By comparing the FTS (T =
-0.20) with ReLU in specific, FTS (T = -0.20) improves classification accuracy by 0.13%, 0.70%, 0.67%,
1.07% and 1.15% on DFNN-5a, DFNN-5, DFNN-6, DFNN-7 and DFNN-8 respectively.

Table 5. The test accuracy of FTS with vary of T and existing activation functions. The “score” column

aggregate the number of times of each FTS outperforming the best result obtained by the existing

activation function.

Activation function
Test accuracy (%) (Mean of 5 runs)

Score
DFNN-5a DFNN-5 DFNN-6 DFNN-7 DFNN-8

ReLU 98.06 96.96 97.27 96.76 96.64 -

Swish 97.97 97.65* 97.85* 97.77* 97.64* -

LReLU (α = 0.01) 98.11* 96.85 97.17 96.66 97.02 -

LReLU (α = 0.25) 97.64 96.44 97.15 97.30 97.35 -

Softplus 95.28 94.46 77.43 Not

converge

Not

converge

-

ELU 96.98 96.52 96.89 97.00 97.17 -

FReLU 98.09 97.60 97.75 97.58 97.36 -

FTS (T=0.00) 98.13 97.10 96.96 95.77 74.65 1

FTS (T=-0.05) 98.16 97.39 97.51 97.37 97.31 1

FTS (T=-0.10) 98.15 97.56 97.84 97.91 97.87 3

FTS (T=-0.15) 98.19 97.61 97.84 97.87 97.74 3

FTS (T=-0.20) 98.19 97.66 97.94 97.83 97.79 5

FTS (T=-0.25) 98.12 97.68 97.83 97.88 97.54 3

FTS (T=-0.30) 98.10 97.75 97.82 97.85 97.44 2

FTS (T=-0.35) 98.07 97.60 97.69 97.61 97.42 0

FTS (T=-0.40) 98.01 97.56 97.69 97.72 97.46 0

Note: The values with asterisk (*) indicate the best results obtained by existing activation functions on respective model. While the

values in bold indicate the results of FTS that outperformed the result noted with asterisk (*) on respective model.

3.5. Convergence Rate

 Apart from evaluating the performance based on the test accuracy, evaluating from the perspective
of convergence speed could also telling how well an activation function performs. The experiment trains
the DFNN-8 with FTS (T = -0.20) and ReLU using MNIST dataset for 20 epochs. The training and
testing accuracy curves of both activation functions are plotted as shown in Fig. 7. Surprisingly, the
experiment results show that FTS (T = -0.20) convergence about 2 times faster than ReLU. This again
confirmed by the previous works [11], [19], [37] that the activation function that has a slight negative
property at x < 0 tend to converge much faster than ReLU.

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 84
 Vol. 4, No. 2, July 2018, pp. 76-86

 Chieng et.al (Flatten-T Swish: a thresholded ReLU-Swish-like activation function for deep learning)

Fig. 7. The training and testing curves of FTS (T = -0.20) and ReLU on DFNN-8 network. Best viewed in

0063olor.

4. Conclusion

In this paper, a ReLU-Swish-like activation function called Flatten-T-Swish (FTS) is presented. In
contrast to ReLU, FTS activation function has a small threshold value T is added to allow negative
representations to be flown through the entire network, particularly during the forward propagation.
This property enables the network benefits from the negative representations and leads to better
predictive performance. Meanwhile, FTS retains the sparsity property during backpropagation where its
derivative returns zero at x < 0, which is an important element to reduce the computational complexity.
The experiment has shown that the FTS particularly with T = -0.20 outperformed other existing
activation functions consistently in all five DFNNs with various depth. Specifically, by comparing with
ReLU baseline, FTS (T = -0.20) improves MNIST classification accuracy by 0.13%, 0.70%, 0.67%,
1.07% and 1.15% on DFNN-5a, DFNN-5, DFNN-6, DFNN-7 and DFNN-8 respectively. In addition,
the experiment also observed that FTS does speed up convergence about 2 times faster than ReLU. As
according to the work in [10], [13], [37], this work yet again confirms the importance of negative value
in contributing to the overall network performance.

Acknowledgment

The authors appreciate the efforts of the Office for Research, Innovation, Commercialization and
Consultancy Management (ORICC) for providing the Postgraduate Research Grant (GPPS) under Vot
U817 and Universiti Tun Hussein Onn Malaysia (UTHM) for supporting this work.

References

[1] R. H. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and H. S. Seung, “Digital selection and
analogue amplification coexist in a cortex-inspired silicon circuit,” Nature, vol. 405, no. 6789, p. 947, 2000,
doi: https://doi.org/10.1038/35016072.

[2] K. Jarrett, K. Kavukcuoglu, and Y. LeCun, “What is the best multi-stage architecture for object
recognition?,” in Computer Vision, 2009 IEEE 12th International Conference on, 2009, pp. 2146–2153, doi:
https://doi.org/10.1109/ICCV.2009.5459469.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural
networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105, available at:
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.

[4] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural network acoustic models,”
in Proc. icml, 2013, vol. 30, p. 3, available at: https://pdfs.semanticscholar.org/367f/2c63a6f6a10b3b64b8729d
601e69337ee3cc.pdf.

[5] W. Ouyang, A. Aristov, M. Lelek, X. Hao, and C. Zimmer, “Deep learning massively accelerates super-
resolution localization microscopy,” Nat. Biotechnol., 2018, doi: https://doi.org/10.1038/nbt.4106.

https://doi.org/10.1038/35016072
https://doi.org/10.1109/ICCV.2009.5459469
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://pdfs.semanticscholar.org/367f/2c63a6f6a10b3b64b8729d601e69337ee3cc.pdf
https://pdfs.semanticscholar.org/367f/2c63a6f6a10b3b64b8729d601e69337ee3cc.pdf
https://doi.org/10.1038/nbt.4106

85 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 2, July 2018, pp. 76-86

Chieng et.al (Flatten-T Swish: a thresholded ReLU-Swish-like activation function for deep learning)

[6] P. Wang, R. Ge, X. Xiao, Y. Cai, G. Wang, and F. Zhou, “Rectified-Linear-Unit-Based Deep Learning for
Biomedical Multi-label Data,” Interdiscip. Sci. Comput. Life Sci., vol. 9, no. 3, pp. 419–422, 2017, doi:
https://doi.org/10.1007/s12539-016-0196-1.

[7] W. Xie, J. A. Noble, and A. Zisserman, “Microscopy cell counting and detection with fully convolutional
regression networks,” Comput. Methods Biomech. Biomed. Eng. Imaging Vis., vol. 6, no. 3, pp. 283–292, 2018,
doi: https://doi.org/10.1080/21681163.2016.1149104.

[8] A. Valada, L. Spinello, and W. Burgard, “Deep feature learning for acoustics-based terrain classification,” in
Robotics Research, Springer, 2018, pp. 21–37, doi: https://doi.org/10.1007/978-3-319-60916-4_2.

[9] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations in convolutional
network,” ArXiv Prepr. ArXiv150500853, 2015, available at: https://arxiv.org/abs/1505.00853v2.

[10] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network learning by exponential
linear units (elus),” ArXiv Prepr. ArXiv151107289, 2015, available at: https://arxiv.org/abs/1511.07289v5.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1026–
1034, https://doi.org/10.1109/ICCV.2015.123.

[12] D. Hendrycks and K. Gimpel, “Bridging nonlinearities and stochastic regularizers with Gaussian error linear
units,” ArXiv Prepr. ArXiv160608415, 2016, doi: https://arxiv.org/abs/1606.08415v2.

[13] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-normalizing neural networks,” in Advances
in Neural Information Processing Systems, 2017, pp. 971–980, available at: http://papers.nips.cc/paper/6698-
self-normalizing-neural-networks.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,”
Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998, doi: https://doi.org/10.1109/5.726791.

[15] J. Xiao, Z. Liu, P. Zhao, Y. Li, and J. Huo, “Deep Learning Image Reconstruction Simulation for
Electromagnetic Tomography,” IEEE Sens. J., vol. 18, no. 8, pp. 3290–3298, 2018, doi:
https://doi.org/10.1109/JSEN.2018.2809485.

[16] F. Belletti, A. Beutel, S. Jain, and E. Chi, “Factorized Recurrent Neural Architectures for Longer Range
Dependence,” in International Conference on Artificial Intelligence and Statistics, 2018, pp. 1522–1530, available
at: http://proceedings.mlr.press/v84/belletti18a.html.

[17] M. A. Masrob, M. A. Rahman, and G. H. George, “Design of a neural network based power system stabilizer
in reduced order power system,” in Electrical and Computer Engineering (CCECE), 2017 IEEE 30th Canadian
Conference on, 2017, pp. 1–6, doi: https://doi.org/10.1109/CCECE.2017.7946634.

[18] J. Han and C. Moraga, “The influence of the sigmoid function parameters on the speed of backpropagation
learning,” in International Workshop on Artificial Neural Networks, 1995, pp. 195–201, doi:
https://doi.org/10.1007/3-540-59497-3_175.

[19] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,” 2018, available at:
https://openreview.net/forum?id=SkBYYyZRZ.

[20] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On the number of linear regions of deep neural
networks,” in Advances in neural information processing systems, 2014, pp. 2924–2932, available at:
http://papers.nips.cc/paper/5422-on-the-number-of-linear-regions-of-deep-neural-networks.

[21] Y. LeCun et al., “Backpropagation applied to handwritten zip code recognition,” Neural Comput., vol. 1, no.
4, pp. 541–551, 1989, doi: https://doi.org/10.1162/neco.1989.1.4.541.

[22] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, p. 436, 2015, available at:
https://www.nature.com/articles/nature14539.

[23] G. Van Rossum, “An introduction to Python for UNIX/C programmers,” Proc NLUUG Najaarsconferentie
Dutch UNIX Users Group, 1993, available at: http://liuj.fcu.edu.tw/net_pg/python/Intro-Python.pdf.

[24] M. Abadi et al., “Tensorflow: a system for large-scale machine learning.,” in OSDI, 2016, vol. 16, pp. 265–
283, available at: https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf.

https://doi.org/10.1007/s12539-016-0196-1
https://doi.org/10.1080/21681163.2016.1149104
https://doi.org/10.1007/978-3-319-60916-4_2
https://arxiv.org/abs/1505.00853v2
https://arxiv.org/abs/1511.07289v5
https://doi.org/10.1109/ICCV.2015.123
https://arxiv.org/abs/1606.08415v2
http://papers.nips.cc/paper/6698-self-normalizing-neural-networks
http://papers.nips.cc/paper/6698-self-normalizing-neural-networks
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/JSEN.2018.2809485
http://proceedings.mlr.press/v84/belletti18a.html
https://doi.org/10.1109/CCECE.2017.7946634
https://doi.org/10.1007/3-540-59497-3_175
https://openreview.net/forum?id=SkBYYyZRZ
http://papers.nips.cc/paper/5422-on-the-number-of-linear-regions-of-deep-neural-networks
https://doi.org/10.1162/neco.1989.1.4.541
https://www.nature.com/articles/nature14539
http://liuj.fcu.edu.tw/net_pg/python/Intro-Python.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 86
 Vol. 4, No. 2, July 2018, pp. 76-86

 Chieng et.al (Flatten-T Swish: a thresholded ReLU-Swish-like activation function for deep learning)

[25] S. S. Girija, “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” 2016,
available at: https://cse.buffalo.edu/~chandola/teaching/mlseminardocs/TensorFlow.pdf.

[26] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” in
Proceedings of the thirteenth international conference on artificial intelligence and statistics, 2010, pp. 249–256,
available at: http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf?hc_location=ufi.

[27] N. C. Camgoz, S. Hadfield, O. Koller, and R. Bowden, “Using convolutional 3d neural networks for user-
independent continuous gesture recognition,” in Pattern Recognition (ICPR), 2016 23rd International
Conference on, 2016, pp. 49–54, doi: https://doi.org/10.1109/ICPR.2016.7899606.

[28] H.-J. Kim and Y.-H. Kim, “Classifying Copyrighted Designs through Convolutional Neural Networks,” Int.
J. Appl. Eng. Res., vol. 13, no. 1, pp. 590–597, 2018, available at: https://www.ripublication.com/ijaer18/
ijaerv13n1_79.pdf.

[29] S. K. Gouda, S. Kanetkar, D. Harrison, and M. K. Warmuth, “Speech Recognition: Key Word Spotting
through Image Recognition,” 2018, available at: https://arxiv.org/abs/1803.03759v1.

[30] L. Botton, “Large-scale machine learning with stochastic gradient descent,” in Proceedings of
COMPSTAT’2010, 2010, pp. 177–186, doi: https://doi.org/10.1007/978-3-7908-2604-3_16.

[31] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal
covariate shift,” 2015, available at: https://arxiv.org/abs/1502.03167.

[32] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in Proceedings of
the 27th international conference on machine learning (ICML-10), 2010, pp. 807–814, available at:
https://www.cs.toronto.edu/~hinton/absps/reluICML.pdf.

[33] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in Proceedings of the fourteenth
international conference on artificial intelligence and statistics, 2011, pp. 315–323, available at:
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf.

[34] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia, “Incorporating second-order functional knowledge
for better option pricing,” in Advances in neural information processing systems, 2001, pp. 472–478, available at:
http://papers.nips.cc/paper/1920-incorporating-second-order-functional-knowledge-for-better-option-
pricing.pdf.

[35] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units for neural network function
approximation in reinforcement learning,” Neural Netw., 2018, doi: https://doi.org/10.1016/j.neunet.
2017.12.012.

[36] E. Alcaide, “E-swish: Adjusting Activations to Different Network Depths,” ArXiv Prepr. ArXiv 1801.07145,
2018, available at: https://arxiv.org/abs/1801.07145v1.

[37] S. Qiu, X. Xu, and B. Cai, “FReLU: Flexible Rectified Linear Units for Improving Convolutional Neural
Networks,” ArXiv Prepr. ArXiv170608098, 2017, available at: https://arxiv.org/abs/1706.08098.

https://cse.buffalo.edu/~chandola/teaching/mlseminardocs/TensorFlow.pdf
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf?hc_location=ufi
https://doi.org/10.1109/ICPR.2016.7899606
https://www.ripublication.com/ijaer18/ijaerv13n1_79.pdf
https://www.ripublication.com/ijaer18/ijaerv13n1_79.pdf
https://arxiv.org/abs/1803.03759v1
https://doi.org/10.1007/978-3-7908-2604-3_16
https://arxiv.org/abs/1502.03167
https://www.cs.toronto.edu/~hinton/absps/reluICML.pdf
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
http://papers.nips.cc/paper/1920-incorporating-second-order-functional-knowledge-for-better-option-pricing.pdf
http://papers.nips.cc/paper/1920-incorporating-second-order-functional-knowledge-for-better-option-pricing.pdf
https://arxiv.org/abs/1706.08098

