
International Journal of Advances in Intelligent Informatics ISSN 2442-6571

Vol. 4, No. 3, November 2018, pp. 251-260 251

 https://doi.org/10.26555/ijain.v4i3.266 http://ijain.org ijain@uad.ac.id

Analogy-based model for software project effort estimation

Ardiansyah 1,*, Murein Miksa Mardhia 2, Sri Handayaningsih 3

Software Engineering and Data Knowledge Research Group, Department of Informatics, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
1 ardiansyah@tif.uad.ac.id; 2 murein.miksa@tif.uad.ac.id; 3 sriningsih@tif.uad.ac.id

* corresponding author

1. Introduction

In term of software development, the first step is likely started from estimating the project effort. A
project manager must be careful in considering the three main factors of a project: system functionality,
duration and project costs [1]. Project estimation is essential for software development project able to
run on time and budget with maximum quality. In 2015, Standish Group released a survey result that
52.7% of software projects were always late from initial estimation and its costs also exceeded the budget.

 Software effort estimation has been researched and developed both in algorithmic and machine
learning method since the 1960s. Estimation based on expert judgement is one of the earliest and most
widely used methods. Expert judgement is a process of estimating the software that results from an
assessment process conducted by experts who are experienced in software projects. One of the well-
known estimation techniques is Planning Poker which is often used in Agile software development
methodologies [2]. There is also a Function Point, an estimation method proposed by [3] using the
function points as a unit of size of the software to be developed. COCOMO or Constructive Cost Model
is one of the most popular algorithmic method [4]. COCOMO I classified three project classes of
Organic, Semidetached and Embedded [5]. The Use Case Point proposed by [6] estimates the effort of
the software with several effort drivers including UCW, UUCW, ECF, TCF. The UCP itself is derived
from the Function Points method using 20 or 28 productivity factors. Moreover, there is a regression
analysis introduced by [7] and [8] which analyzes the relationship between two or more independent
and dependent variables. Bayesian Belief Network (BNN) is a method with a causal-relationship approach
described as directed acyclic graph. Nodes symbol represent discrete variables or random continuum, and

ARTICL E INFO

ABSTRACT

Article history

Received August 25, 2018

Revised October 21, 2018

Accepted November 10, 2018

Available online November 11, 2018

 Accurate effort estimation of software development plays an important role
to predict how much effort should be prepared during the works of a
software project so that it can be completed on time and budget. Some
sectors, e.g. banking sectors, were renowned fields of software projects, not
only due to its huge size of project, but also extremely expensive and takes
a long time to completion. Project estimation is essential for software
development project able to run on time and budget with maximum
quality. This study aims to investigate the accuracy of software project effort
estimation with the Analogy method using three parameters: Euclidean,
Manhattan and Minkowski distance. Analogy based estimation consists
several stage included similarity measure, analogy adaptation, estimation
calculation and model evaluation. The results showed that the best
combination of Analogy methods was using Manhattan distance with an
accuracy of 50% MMRE, 28% MdMRE and Pred(25) 48%. Thus, we can
concluded that this model can be used to predict accurately.

This is an open access article under the CC–BY-SA license.

Keywords

Analogy estimation

Effort estimation

Software project

Similarity distance

Machine learning

https://doi.org/10.26555/ijain.v4i3.266
http://ijain.org/index.php/IJAIN/index
mailto:ijain@uad.ac.id?subject=[IJAIN]
mailto:ardiansyah@tif.uad.ac.id
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.26555/ijain.v4i3.266&domain=pdf

252 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 3, November 2018, pp. 251-260

 Ardiansyah et al. (Analogy-based model for software project effort estimation)

edges represent a probabilistic dependence between the connected variables [9]-[10]. In addition, other
approach have been widely used such as Artificial Neural Networks [11]-[12].

 To summarize, there are two types of approaches for estimating software development effort:
algorithmic and machine learning approaches. The machine learning method used to estimate software
effort include KNN, Support Vector Machine (SVM) [13], Decision Tree [14], Analogy, Deep Learning
[15], Ensemble [16] and Neural Network (NN) [17]. One important issue of software project estimation
is related to estimation accuracy. Accurate estimation is necessary for the project can be completed on
time and on budget. Unfortunately no estimating approach has proved consistently accurate. This is a
major challenging problem should be solved in effort estimation field.

Among those various methods of estimating software effort, Analogy is the most commonly used
method. Analogy compares the effort driver of a new software project to the previous project data to
find the most similar project. This is possible because Analogy is able to learn from previous experiences
autonomously. Analogy evaluation results have shown the highest accuracy compared to the other
machine learning and non-machine learning methods where the average mean magnitude of relative
error (MMRE) is 49.8%, the median magnitude of relative error (MdMRE) of 29.37% and Pred(25) of
51.23% [18].

Data sets play a vital role in the implementation of Analogy for software project estimation. There
are currently a number of data sets of software projects publicly available including COCOMO81 [19],
Miyazaki, Albrecht, China, ISBSG [20], Desnarhais, NASA, Maxwell [21], Kemerer [22], Finnish,
Cosmic [23], Kitchenham, UCP, Telecom, Atkinson and Tukutuku. This paper aims to investigate the
accuracy of the Analogy method on data sets of software projects. This research has one major
contribution namely the implementation of Analogy framework to gain the consistent accuracy result in
software project effort prediction.

2. Method

2.1. Analogy-based Estimation

The essence of Analogy-based method is to compare the projects that will be estimated with all the
software project's historical data. Project data can come from primary data that is internal to the company
or widely available public data. Comparison is done to find out which projects are the most similar that
will be estimated. Similar projects will be selected to be adapted so that the estimated effort of the new
project can be identified. Fig. 1 shows the Analogy-based estimation model framework.

Fig. 1. Analogy-based estimation framework

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 253
 Vol. 4, No. 3, November 2018, pp. 251-260

 Ardiansyah et al. (Analogy-based model for software project effort estimation)

2.2.1. Similarity Measure

Similarity measures calculates the similarity between projects based on how close the distance
between projects according to the type of each attribute. The measurement techniques used in this
experiment are Euclidean, Manhattan and Minkowski which are proven to produce good results
according to similarity measurements [24]-[25].

Euclidean distance is measuring the distance D between two software projects notated in equation
(1) and (2). Where p is a new project that will be estimated and p' is the older project that has been
completed. The 𝑓𝑖 and 𝑓′𝑖 show i-th attribute/feature value of a project, 𝑤𝑖 = {0, 1} is the weight of the
i-th attribute.

𝐷(𝑝, 𝑝′) = √∑ 𝑤𝑖
𝑛
𝑖=1 𝐷𝑖𝑠(𝑓𝑖 , 𝑓′

𝑖
)  

𝐷𝑖𝑠(𝑓𝑖 , 𝑓′
𝑖
) = {

(𝑓𝑖 − 𝑓′
𝑖
)2, 𝑖𝑓 𝑓𝑖 𝑎𝑛𝑑 𝑓′𝑖 𝑎𝑟𝑒 𝑛𝑢𝑚𝑒𝑟𝑖𝑐 𝑜𝑟 𝑜𝑟𝑑𝑖𝑛𝑎𝑙

1, 𝑖𝑓 𝑓𝑖 𝑎𝑛𝑑 𝑓′𝑖 𝑎𝑟𝑒 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑎𝑛𝑑 𝑓𝑖 = 𝑓′𝑖

0, 𝑖𝑓 𝑓𝑖 𝑎𝑛𝑑 𝑓′𝑖 𝑎𝑟𝑒 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑎𝑛𝑑 𝑓𝑖 ≠ 𝑓′𝑖

 

Manhattan distance calculates the absolute distance on each pair of attributes without rooting as
denoted by equation (3) and (4).

𝐷(𝑝, 𝑝′) = ∑ 𝑤𝑖𝐷𝑖𝑠(𝑓𝑖 , 𝑓′𝑖)
𝑛
𝑖=1   

𝐷𝑖𝑠(𝑓𝑖 , 𝑓′
𝑖
) = {

|𝑓𝑖 − 𝑓′𝑖|, 𝑖𝑓 𝑓𝑖 𝑎𝑛𝑑 𝑓′𝑖 𝑎𝑟𝑒 𝑛𝑢𝑚𝑒𝑟𝑖𝑐 𝑜𝑟 𝑜𝑟𝑑𝑖𝑛𝑎𝑙

1, 𝑖𝑓 𝑓𝑖 𝑎𝑛𝑑 𝑓′𝑖 𝑎𝑟𝑒 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑎𝑛𝑑 𝑓𝑖 = 𝑓′𝑖

0, 𝑖𝑓 𝑓𝑖 𝑎𝑛𝑑 𝑓′𝑖 𝑎𝑟𝑒 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑎𝑛𝑑 𝑓𝑖 ≠ 𝑓′𝑖

 

Minkowski distance is a generalization of Euclidean and Manhattan distance that calculates the rank
of each attribute pair as denoted by equation (5) and (6).

𝐷(𝑝, 𝑝′) = √∑ 𝑤𝑖
𝑛
𝑖=1 𝐷𝑖𝑠(𝑓𝑖, 𝑓′

𝑖
)

ℎ
  

𝐷𝑖𝑠(𝑓𝑖 , 𝑓′
𝑖
) = {

|𝑓𝑖 − 𝑓′𝑖|ℎ, 𝑖𝑓 𝑓𝑖 𝑎𝑛𝑑 𝑓′𝑖 𝑎𝑟𝑒 𝑛𝑢𝑚𝑒𝑟𝑖𝑐 𝑜𝑟 𝑜𝑟𝑑𝑖𝑛𝑎𝑙

1, 𝑖𝑓 𝑓𝑖 𝑎𝑛𝑑 𝑓′𝑖 𝑎𝑟𝑒 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑎𝑛𝑑 𝑓𝑖 = 𝑓′𝑖

0, 𝑖𝑓 𝑓𝑖 𝑎𝑛𝑑 𝑓′𝑖 𝑎𝑟𝑒 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑎𝑛𝑑 𝑓𝑖 ≠ 𝑓′𝑖

 

2.2.2. Number of Selected Analogy

The selected analogy is determined by how many most similar projects used as analogues to model
software project effort estimation. There are two types of analogy selection: fixed and dynamics analogy
selection. Some studies that adopt fixed analogy selection suggest using one closest analogy (K = 1), two
closest analogy K = {1, 2}, three closest analogy K = {1, 2, 3}, four closest analogy K = {1, 2, 3, 4} or five
closest analogy K = {1, 2, 3, 4, 5}. In this study, the fixed analogy selection category was chosen by
applying all of the combinations, K = 1, K = {1, 2}, K = {1, 2, 3}, K = {1, 2, 3, 4} and K = {1, 2, 3, 4, 5}.

2.2.3. Analogy Adaptation

After determining the number of selected analogy, the next step is predicting the effort of the new
project by calculating certain statistical techniques based on the selected project. There are four analogy
adaptations applied here: closest analogy (CA), mean of closest analogies, median of closest analogy, and
inverse rank weighted mean (IRWA) of closest analogy.

Closest analogy means choosing one (K = 1) from the closest project. Mean of closest analogies is
adaptation analogy obtained by calculating the average effort driver from as many as K > 1 selected
analogy. The median of closest analogy is an adaptation analogy obtained by calculating the median effort
driver from as many as K > 2 selected analogies. Inverse rank weighted mean is an adaptation analogy
that gives the highest weight in the selected analogy most similar to other analogy. For example, if four

254 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 3, November 2018, pp. 251-260

 Ardiansyah et al. (Analogy-based model for software project effort estimation)

closest analogy are selected, the first closest analogy (CA) is given a weight of four, the second closest
analogy (SC) is given a weight of three, the third closest analogy (TC) is given weight two and the fourth
closest analogy (LA) are given a weight of one [26]. The calculation of inverse rank weighted mean is
formulated as in (7).

𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑅𝑎𝑛𝑘 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑀𝑒𝑎𝑛 =
4𝐶𝐴+3𝑆𝐶+2𝑇𝐶+𝐿𝐴

10
  (7)

2.2.4. Adaptation Rules

Adaptation rules are the last step taken to calculate the amount of effort estimated on a new project
according to the most similar selected project. The calculation is done by dividing the old project effort
with the size of old project then multiply with the size of new project. Equation (8) denoted the
formulations of these adaptation rules.

𝐸𝑓𝑓𝑜𝑟𝑡𝑛𝑒𝑤 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 =
𝐸𝑓𝑓𝑜𝑟𝑡𝑜𝑙𝑑 𝑝𝑟𝑜𝑗𝑒𝑐𝑡

𝑆𝑖𝑧𝑒𝑜𝑙𝑑 𝑝𝑟𝑜𝑗𝑒𝑐𝑡
𝑆𝑖𝑧𝑒𝑛𝑒𝑤 𝑝𝑟𝑜𝑗𝑒𝑐𝑡   (8)

2.2.5. Model Evaluation

Three evaluation criteria used in this study are Mean Magnitude of Relative Error (MMRE), Median
Magnitude of Relative Error (MdMRE) and Pred(25). These three criteria are most widely used to
measure the accuracy of software project estimation models resulting from the Magnitude of Relative
Error (MRE) measurement. MMRE is generated by calculating the average MRE of each project in the
data set. MMRE is one of evaluation technique that is used to assess the efficiency of the effort to be
estimated.

MRE is a statistical technique used to measure the accuracy of project estimates obtained from
dividing the absolute value from 𝑒𝑖 subtracted by 𝑒̂𝑖 with 𝑒𝑖, as denoted in equation (9). In equation (9),
e shows the actual effort of the old project and 𝑒̂ is the estimated effort of the new project obtained
using (8).

𝑀𝑅𝐸 =
|𝑒𝑖−𝑒̂𝑖|

𝑒𝑖
 

MMRE as denoted by equation (10) is one of the accuracy measurements for software project
estimation models that calculate the average of MRE. The accuracy of the estimation model is
categorized as good if the MMRE is less than equal to 0.25.

𝑀𝑀𝑅𝐸 =
1

𝑛
∑

|𝑒𝑖−𝑒̂𝑖|

𝑒𝑖

𝑖=𝑛
𝑖=1   

MdMRE as denoted by equation (11) is an accuracy measurement of a software project estimation
model that calculates the median of MRE. The accuracy of the estimation model is categorized as good
if MdMRE is less than equal to 0.25.

𝑀𝑑𝑀𝑅𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑀𝑅𝐸)  

Pred(25) is an aggregate of the percentage of MRE which is less than equal to 0.25, as denoted by
equation (12). The accuracy of the estimation model is categorized as good if Pred(25) is more than
equal to 0.75.

𝑃𝑟𝑒𝑑(25) =
1

𝑛
x ∑ (𝑀𝑅𝐸 ≤ 0.25)𝑛

𝑖=1   (12)

2.2. Data Set Description

The experiment uses Maxwell's data set consists of 62 banking software project data in Finland from
1985 to 1993 and has often been used in research related to software project estimation [27]–[29]. There
are 16 attributes owned by Maxwell's data set [30]. In order to develop the estimation model, three

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 255
 Vol. 4, No. 3, November 2018, pp. 251-260

 Ardiansyah et al. (Analogy-based model for software project effort estimation)

attributes were chosen which had a major influence on the project, namely Duration, Size and Effort.
Duration is a numeric type attribute that shows the duration of the project from the specification stage
until it is sent to the client and measured in months. Size is a numeric type attribute that shows the size
of a software project that is calculated by the unit function point (FP). Effort is a numeric type attribute
that shows how long a software developer works on a project starting from the specification stage to
being sent to the client and measured in hours.

Five from the total number of 62 project data have been removed from the data set since those are
considered as outliers due to the very large values. Those are projects with ID numbers 62, 38, 26, 21
and 18. This is done in accordance with the recommendations from [31] which state that outlier data
need to be eliminated. Reference [24] had also once discarding data because it indicates an outlier with
very little value. Thus, of the 62 data now, 57 data sets are left to be used for experiments. Descriptive
statistics for effort driver size, duration attributes and the amount of effort of software development on
the Effort attribute are shown in Table 1. The average project size is 478 function points, with a work
duration of 5.6 months with an effort of 5910.2 hours. The smallest project size is 48 FP and the largest
is 1849 FP. The fastest project duration is one month and a maximum of nine months with a standard
deviation of 2.2 months. The least deployed efficiency is 583 hours and the largest is 25919 hours with
a standard deviation of 4968.8 hours.

Table 1. Descriptive Statistic Maxwell Data Set (N = 57)

Attribute Minimum Maximum Mean Median Standard Deviation

Size 48 1849 478.0 366 397.9

Duration 1 9 5.6 6 2.2

Effort 583 25910 5910.2 4557 4968.8

3. Results and Discussion

Data sets are randomly divided into training data and testing data, with a percentage of 87% and
13% respectively. This division differs from what was done by [30] which divided 50 training data from
projects prior to year 1992 and 12 testing data from the project between year 1992 and 1993. Fig. 2
shows the framework for cross-validation process.

Fig. 2. Framework for cross-validation process

The results of the evaluation process use three-fold cross validation techniques to form a composition
as shown in Table 2.

Table 2. Three-fold Cross Validation Technique

Set Training Data Testing Data
1 1,2,3,4,5,6,7,10,11,12,13,14,15,16,22,23,24,25,27,28,29,31,32,33,34,35,36,37,

50,51,52,53,54,55,56, 8,17,19,30,39,48,49

41,42,43,44,45,46,47

2 1,2,3,4,5,6,7,10,11,12,13,14,15,16,22,23,24,25,27,28,29,31,32,33,34,35,36,37,

8,17,19,30,39,48,49, 41,42,43,44,45,46,47

50,51,52,53,54,55,56

3 1,2,3,4,5,6,7,10,11,12,13,14,15,16,22,23,24,25,27,28,29,31,32,33,34,35,36,37,

41,42,43,44,45,46,47,50,51,52,53,54,55,56

8,17,19,30,39,48,49

256 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 3, November 2018, pp. 251-260

 Ardiansyah et al. (Analogy-based model for software project effort estimation)

3.1. MMRE Results

The results of MMRE accuracy obtained by Manhattan distance had the lowest MMRE of 0.39 with
K = 2 using the mean of closest analogies and K = 3 using IRWM, Euclidean distance with the lowest
MMRE of 0.44 with K = 2 and K = 3 using IRWM, Minkowski distance with MMRE was 0.42 with K
= 3 using IRWM. So that the MMRE with Manhattan distance has the best MMRE value compared
to Euclidean and Minkowski distance. Table 3 shown the MMRE results from Manhattan, Euclidean
and Minkowski distance.

Table 3. Mean Magnitude of Relative Error Results

Model Manhattan Euclidean Minkowski
CA-K1 0.54 0.54 0.54

Mean-K2 0.39 0.51 0.50
IRWM-K2 0.46 0.44 0.44

Mean-K3 0.40 0.48 0.44

IRWM-K3 0.39 0.44 0.42

Median-K3 0.46 0.46 0.56
Mean-K4 0.43 0.50 0.48

IRWM-K4 0.40 0.46 0.45

Median-K4 0.50 0.56 0.52

Mean-K5 0.47 0.51 0.50
IRWM-K5 0.43 0.48 0.47

Median-K5 0.50 0.56 0.54

3.2. Pred(25) Results

The results of Pred(25) obtained by Manhattan distance had the highest value of 0.48 with K = 2
using the mean of closest analogies and K = 4 using the median of closest analogies. The highest Pred(25)
value using Euclidean distance of 0.43 with K = 2 using mean of closest analogies, K = 3 uses IRWM
and the median of closest analogies, while Minkowski with highest Pred(25) is 0.48 with K = 2 using
mean of closest analogies as shown in Table 4.

Table 4. Pred(25) Results

Model Manhattan Euclidean Minkowski
CA-K1 0.24 0.24 0.24

Mean-K2 0.48 0.43 0.48

IRWM-K2 0.43 0.38 0.43

Mean-K3 0.38 0.33 0.33
IRWM-K3 0.43 0.43 0.43

Median-K3 0.43 0.43 0.43

Mean-K4 0.29 0.19 0.19

IRWM-K4 0.43 0.33 0.38
Median-K4 0.48 0.29 0.38

Mean-K5 0.29 0.24 0.24

IRWM-K5 0.29 0.24 0.24

Median-K5 0.33 0.29 0.29

Thus can be seen that Manhattan has consistent accuracy because there are two models that have the
highest value when using the mean and the median of closest analogies compared to Euclidean and
Minkowski distance. Though Minkowski has the same value as Manhattan, it only happens on the mean
of closest analogies model.

3.3. MdMRE Results

The evaluation results of MdMRE accuracy obtained by Manhattan distance had the lowest MdMRE
of 0.26 with K = 3 using the mean of closest analogies, Euclidean distance with the lowest MdMRE of
0.31 with K = 3 using the median of closest analogies, Minkowski with the lowest MdMRE of 0.30 with
K = 2 using IRWM. These scores show Manhattan has the best MdMRE accuracy compared to
Euclidean and Minkowski as shown by Table 5.

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 257
 Vol. 4, No. 3, November 2018, pp. 251-260

 Ardiansyah et al. (Analogy-based model for software project effort estimation)

Table 5. MdMRE Results

Model Manhattan Euclidean Minkowski

CA-K1 0.40 0.40 0.40

Mean-K2 0.34 0.34 0.34

IRWM-K2 0.30 0.37 0.30

Mean-K3 0.26 0.35 0.34

IRWM-K3 0.36 0.36 0.36

Median-K3 0.31 0.31 0.31

Mean-K4 0.41 0.47 0.45

IRWM-K4 0.31 0.41 0.41

Median-K4 0.28 0.47 0.33

Mean-K5 0.44 0.45 0.45

IRWM-K5 0.37 0.40 0.39

Median-K5 0.35 0.46 0.44

3.4. Absolute Residual Results

Good estimation accuracy is directly related to how well the absolute residual (AR) value is. Absolute
residual is the absolute difference between actual and estimated effort. The smaller the absolute residual
value shows the actual estimated value is the same, which means a good sign. Table 6 shows the absolute
residual score from Euclidean, Manhattan and Minkowski distance using three-fold cross validation.

Table 6. Absolute Residual results

 Euclidean Distance Manhattan Distance Minkowski Distance

 MRE
Absolute

Residual

Actual

Effort
MRE

Absolute

Residual

Actual

Effort
MRE

Absolute

Residual

Actual

Effort

Set 1 1.05 1155.9 1100 0.80 880.4 1100 0.80 835.4 1100

 0.31 1744.6 5578 0.20 1217.4 5578 0.22 1700.6 5578

 0.50 533.9 1060 0.60 598.2 1060 0.56 230.8 1060

 0.04 229.7 5279 0.30 1499.7 5279 0.28 1927.4 5279

 0.34 2724.9 8117 0.20 1444.3 8117 0.18 2977.5 8117

 1.90 16589.5 8710 1.10 9961.1 8710 1.14 15883.2 8710

 0.36 287.4 796 0.40 319.4 796 0.40 186.8 796

Set 2 1.81 10752.0 5931 2.70 16228.5 5931 2.74 4671.2 5931

 0.42 1885.5 4456 0.90 3893.7 4456 0.87 791.4 4456

 0.01 24.0 3600 0.00 90.0 3600 0.02 144.2 3600

 0.41 1872.7 4557 0.90 3908.9 4557 0.86 2411.4 4557

 0.10 898.5 8752 0.20 1622.5 8752 0.19 4067.4 8752

 0.72 2491.0 3440 0.70 2267.3 3440 0.66 2428.5 3440

 0.18 356.0 1981 0.00 35.8 1981 0.02 97.2 1981

Set 3 0.11 1044.0 9125 0.00 453.2 9125 0.05 2293.5 9125

 0.07 1922.0 25910 0.20 4750.2 25910 0.18 5866.6 25910

 0.19 2842.5 15052 0.30 4995.9 15052 0.33 5819.4 15052

 0.48 871.2 1798 0.60 1034.4 1798 0.58 1763.6 1798

 0.08 455.0 5787 0.00 172.0 5787 0.03 1309.7 5787

 0.31 3430.0 11023 0.10 1402.4 11023 0.13 2654.1 11023

 0.24 423.8 1755 0.20 342.4 1755 0.20 21.2 1755

MMRE 0.46 0.50 0.44

MdMRE 0.31 0.28 0.30

Pred(25) 0.42 0.48 0.43

Set 1 for Euclidean distance shows the highest AR of 16589 man-hours with an actual effort of 8710
man-hours, indicates a wide enough difference between actual effort and estimation. MRE of this project
is 1.90, means there is an error of 190% in the estimation relative to actual effort. Set 2 shows the largest
AR value is 10725 man-hours with an actual effort of 5931 man-hours which indicates a wide enough

258 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 3, November 2018, pp. 251-260

 Ardiansyah et al. (Analogy-based model for software project effort estimation)

difference between the actual effort and the estimate. Project’s MRE is 1.81 which means there is a
181% error in the estimation relative to the actual effort. The largest AR value is 3430 man-hours with
an actual effort 11023 man-hours which indicates a very slight difference between actual effort and effort
estimation. MRE of this project is 0.31 which means there is an error in the estimation effort of 31%
relative to the actual effort. Means that the model in set 3 is the best estimation model with Euclidean
distance parameters.

Set 1 for Manhattan distance shows the highest AR of 9961.1 man-hours with an actual effort of
8710 man-hours which indicates a very large difference between actual effort and estimation. MRE
project is 1.1, means there is an estimated error of 110% relative to actual effort. Set 2 shows the largest
AR value is 16228.5 man-hours with an actual effort of 5931 man-hours which indicates a slight
difference between actual effort and estimation. MRE is 2.7, means there is a 270% error in the
estimation relative to the actual effort. Set 3 shows the largest AR value is 4995.9 man-hours with an
actual effort of 15052 man-hours which indicates a very slight difference between actual effort and effort
estimation. MRE of this project is 0.3, means there is an estimated error of 30% relative to the actual
effort. Model in set 3 is the best estimation model in Manhattan distance parameters.

Set 1 for Minkowski distance shows the highest AR of 15883.2 man-hours with an actual effort of
8710 man-hours which indicates a wide enough difference between actual effort and effort estimation.
MRE of this project is 1.14 which means there is an error of 114% in the estimation relative to the
actual effort. Set 2 shows the largest AR value is 4671.2 man-hours with an actual effort of 5931 man-
hours which indicates a very large difference between the actual effort and the estimation. MRE of this
project is 2.74 which means there is an estimated error of 274% relative to the actual effort. Set 3 shows
the largest AR value is 5866.64 man-hours with an actual effort of 25910 man-hours which indicates a
very small difference between actual effort and effort estimation. MRE of this project is 0.18 which
means there is an estimated error of 18% relative to the actual effort. The model in set 3 is concluded
as the best estimation model on the Minkowski distance parameter.

3.5. Model Comparison

The last stage is comparing the accuracy between models using Manhattan distance parameters with
the research conducted by Idri [7]. As shown in Fig. 3, the accuracy of MMRE, MdMRE and Pred (25)
at Manhattan distance are 50%, 28% and 48% respectively. While Idri has an accuracy of 49.9% for
MMRE, 29.37% for MdMRE and 51.23% for Pred (25). Based on these comparisons, MMRE and
MdMRE and Pred (25) have a very slight difference in accuracy. On the other hand, it also can be
concluded that Manhattan and Idri have almost similar results of accuracy.

Fig. 3. Accuracy comparison between Manhattan and Idri

50

28

4849.9

29.37

51.23

0

10

20

30

40

50

60

MMRE MdMRE Pred(25)

P
er

ce
n
ta

ge

Accuracy Comparison

Manhattan Idri

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 259
 Vol. 4, No. 3, November 2018, pp. 251-260

 Ardiansyah et al. (Analogy-based model for software project effort estimation)

4. Conclusion

Analogy-based estimation requires past project history data as an analogous. Accuracy of effort
estimation is very dependent on the similarity of the project history data. In addition to rigorous data,
other problems that fluctuate the accuracy of the overall analogy are the number of selected analogies,
distance measurements, and solution adaptation. The similarity of project to be estimated is the key to
improving the accuracy of the Analogy-based estimation. This paper proposes Analogy as an estimation
model of the effort of software by adjusting three distance measurements, namely Euclidean, Manhattan
and Minkowski distance. The results of the evaluation of the accuracy of all three have been described
in this article. The best results are obtained with Manhattan distance with a 50% MMRE, 28% MdMRE
and Pred(25) at 48%. These results are not as far off as observed by [18] that the mean accuracy of the
analogy method is MMRE 49.9%, MdMRE 29.37% and Pred(25) 51.23%.

Acknowledgment

This research is supported by “Penelitian Hibah Bersaing Universitas Ahmad Dahlan (PHB-UAD)”
in academic year 2017/2018 with the contract number of PHB-028/SP3/LPPM-UAD/VI/2018.

References

[1] A. Dennis, B. H. Wixom, and D. Tegarden, Systems analysis and design: An object-oriented approach with
UML, 5th ed. Wiley, 2015, available at: Google Scholar.

[2] M. Cohn, Agile estimating and planning. Prentice Hall, 2006, available at: Google Scholar.

[3] A. J. Albrecht and J. E. Gaffney, “Software Function, Source Lines of Code, and Development Effort
Prediction: A Software Science Validation,” IEEE Trans. Softw. Eng., vol. SE-9, no. 6, pp. 639–648, Nov.
1983, doi: https://doi.org/10.1109/TSE.1983.235271.

[4] B. W. Boehm et al., Software Cost Estimation with Cocomo II with Cdrom, 1st ed. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 2000, available at: https://dl.acm.org/citation.cfm?id=557000.

[5] L. Laird and M. C. Brennan, Software Measurement and Estimation: A Practical Approach. Wiley, 2006, doi:
https://doi.org/10.1002/0471792535.

[6] C. F. Kemerer, “An empirical validation of software cost estimation models,” Commun. ACM, vol. 30, no.
5, pp. 416-429, 1987, doi: https://doi.org/10.1145/22899.22906.

[7] Y. Miyazaki, M. Terakado, K. Ozaki, and H. Nozaki, “Robust regression for developing software estimation
models,” J. Syst. Softw., vol. 27, no. 1, pp. 3–16, Oct. 1994, doi: https://doi.org/10.1016/0164-1212(94)90
110-4.

[8] F. Yücalar, D. Kilinc, E. Borandag, and A. Ozcift, “Regression Analysis Based Software Effort Estimation
Method,” Int. J. Softw. Eng. Knowl. Eng., vol. 26, no. 05, pp. 807–826, Jun. 2016, doi:
https://doi.org/10.1142/S0218194016500261.

[9] A. Trendowicz and R. Jeffery, Software Project Effort Estimation: Foundation and Best Practice Guidelines for
Success. Springer, 2014, doi: https://doi.org/10.1007/978-3-319-03629-8.

[10] F. Zare, H. Khademi Zare, and M. S. Fallahnezhad, “Software effort estimation based on the optimal
Bayesian belief network,” Appl. Soft Comput., vol. 49, pp. 968–980, 2016, doi:
https://doi.org/10.1016/j.asoc.2016.08.004.

[11] C. . Dawson, “A Neural Network Approach to Software Project Effort Estimation,” Int. Conf. Appl. Artif.
Intell. Eng., vol. 16, no. 9, 1996, doi: https://doi.org/ 10.2495/AI960161.

[12] Q. M. Yousef, Y. A. Alshaer, and N. K. Alhammad, “Dragonfly Estimator: A Hybrid Software Projects’
Efforts Estimation Model using Artificial Neural Network and Dragonfly Algorithm,” Int. J. Comput. Sci.
Netw. Secur., vol. 17, no. 9, pp. 108–120, 2017, available at: http://paper.ijcsns.org/07_book/201709/
20170916.pdf.

[13] P. L. Braga, A. L. I. Oliveira, and S. R. L. Meira, “A GA-based feature selection and parameters optimization
for support vector regression applied to software effort estimation,” in Proceedings of the 2008 ACM
symposium on Applied computing - SAC ’08, 2008, p. 1788, doi: https://doi.org/10.1145/1363686.1364116.

https://books.google.nl/books?hl=id&lr=&id=rbLrBgAAQBAJ&oi=fnd&pg=PR9&dq=A.+Dennis,+B.+H.+Wixom,+and+D.+Tegarden,+Systems+Analysis+%26+Design&ots=YJ2Ou_Hqck&sig=LZvtEcUwjvL5RH7hLAcdRkmP85Q&redir_esc=y#v=onepage&q&f=false
https://www.google.com/books?hl=id&lr=&id=BuFWHffRJssC&oi=fnd&pg=PT21&dq=Cohn,+Agile+estimating+and+planning.+Prentice+Hall,&ots=WpchqfO3Ge&sig=gZ3zrWaglw9v-WM_Zo_Y7UL5fn8
https://doi.org/10.1109/TSE.1983.235271
https://dl.acm.org/citation.cfm?id=557000.
https://doi.org/10.1002/0471792535
https://doi.org/10.1145/22899.22906
https://doi.org/10.1016/0164-1212(94)90110-4
https://doi.org/10.1016/0164-1212(94)90110-4
https://doi.org/10.1142/S0218194016500261
https://doi.org/10.1007/978-3-319-03629-8
https://doi.org/10.1016/j.asoc.2016.08.004
https://doi.org/%2010.2495/AI960161
http://paper.ijcsns.org/07_book/201709/20170916.pdf.
http://paper.ijcsns.org/07_book/201709/20170916.pdf.
https://doi.org/10.1145/1363686.1364116

260 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 3, November 2018, pp. 251-260

 Ardiansyah et al. (Analogy-based model for software project effort estimation)

[14] S.-J. Huang, C.-Y. Lin, and N.-H. Chiu, “Fuzzy Decision Tree Approach for Embedding Risk Assessment
Information into Software Cost Estimation Model,” J. Inf. Sci. Eng., vol. 22, pp. 297–313, 2006, available
at: https://pdfs.semanticscholar.org/7a1a/34bc97e67a9253debdc7b5b5e9f3ec149b52.pdf.

[15] M. Choetkiertikul, H. K. Dam, T. Tran, T. T. M. Pham, A. Ghose, and T. Menzies, “A deep learning
model for estimating story points,” IEEE Trans. Softw. Eng., pp. 1–1, 2018, doi:
https://doi.org/10.1109/TSE.2018.2792473.

[16] E. Kocaguneli, T. Menzies, and J. W. Keung, “On the Value of Ensemble Effort Estimation,” IEEE Trans.
Softw. Eng., vol. 38, no. 6, pp. 1403–1416, Nov. 2012, doi: https://doi.org/10.1109/TSE.2011.111.

[17] C. López-Martín and A. Abran, “Neural networks for predicting the duration of new software projects,” J.
Syst. Softw., vol. 101, pp. 127–135, 2015, doi: https://doi.org/10.1016/j.jss.2014.12.002.

[18] A. Idri, F. A. Amazal, and A. Abran, “Analogy-based software development effort estimation: A systematic
mapping and review,” Inf. Softw. Technol., vol. 58, pp. 206–230, 2015, doi:
https://doi.org/10.1016/j.infsof.2014.07.013.

[19] D. J. Reifer, B. Boehm, and S. Chulani, “The Rosetta Stone: Making COCOMO 81 Estimates Work with
COCOMO II,” Crosstalk. J. Def. Softw. Eng., pp. 11–15, 1999, available at: http://sunset.usc.edu/
TECHRPTS/1998/usccse98-516/usccse98-516.pdf.

[20] I. Limited, “isbsg10,” Nov-2012, doi: https://doi.org/10.5281/zenodo.268485.

[21] Y. Li, “Effort Estimation: Maxwell,” Mar-2009, doi: https://doi.org/10.5281/zenodo.268461.

[22] J. W. Keung, “kemerer,” Apr-2010, doi: https://doi.org/10.5281/zenodo.268464.

[23] I. Limited, “Effort Estimation: Cosmic,” Nov-2012, doi: https://doi.org/10.5281/zenodo.268482.

[24] N.-H. Chiu and S.-J. Huang, “The adjusted analogy-based software effort estimation based on similarity
distances,” J. Syst. Softw., vol. 80, no. 4, pp. 628–640, Apr. 2007, doi: https://doi.org/10.1016/j.jss.2006.
06.006.

[25] M. Shepperd and C. Schofield, “Estimating software project effort using analogies,” IEEE Trans. Softw.
Eng., vol. 23, no. 11, pp. 736–743, Nov. 1997, doi: https://doi.org/10.1109/32.637387.

[26] E. Mendes, Cost Estimation Techniques for Web Projects. IGI Global, 2008, doi: https://doi.org/10.4018/978-
1-59904-135-3.

[27] M. Azzeh, A. B. Nassif, and L. L. Minku, “An empirical evaluation of ensemble adjustment methods for
analogy-based effort estimation,” J. Syst. Softw., vol. 103, pp. 36–52, May 2015, doi:
https://doi.org/10.1016/j.jss.2015.01.028.

[28] M. Hosni and A. Idri, “Software effort estimation using classical analogy ensembles based on random
subspace,” in Proceedings of the Symposium on Applied Computing, 2017, pp. 1251–1258, doi:
https://doi.org/10.1145/3019612.3019784.

[29] S. Mensah, J. Keung, M. Bosu, K. E. Bennin, and P. K. Kudjo, “A Stratification and Sampling Model for
Bellwether Moving Window,” 2017, pp. 481–486, available at: http://ksiresearchorg.ipage.com/seke/
seke17paper/seke17paper_126.pdf.

[30] Y. F. Li, M. Xie, and T. N. Goh, “A study of mutual information based feature selection for case based
reasoning in software cost estimation,” Expert Syst. Appl., vol. 36, no. 3, pp. 5921–5931, Apr. 2009, doi:
https://doi.org/10.1016/j.eswa.2008.07.062.

[31] M. Tsunoda, T. Kakimoto, A. Monden, and K. Matsumoto, “An empirical evaluation of outlier deletion
methods for analogy-based cost estimation,” in Proceedings of the 7th International Conference on Predictive
Models in Software Engineering, 2011, pp. 1–10, doi: https://doi.org/10.1145/2020390.2020407.

https://pdfs.semanticscholar.org/7a1a/34bc97e67a9253debdc7b5b5e9f3ec149b52.pdf
https://doi.org/10.1109/TSE.2018.2792473
https://doi.org/10.1109/TSE.2011.111
https://doi.org/10.1016/j.jss.2014.12.002
https://doi.org/10.1016/j.infsof.2014.07.013
http://sunset.usc.edu/TECHRPTS/1998/usccse98-516/usccse98-516.pdf
http://sunset.usc.edu/TECHRPTS/1998/usccse98-516/usccse98-516.pdf
https://doi.org/10.5281/zenodo.268485
https://doi.org/10.5281/zenodo.268461
https://doi.org/10.5281/zenodo.268464
https://doi.org/10.5281/zenodo.268482
https://doi.org/10.1016/j.jss.2006.06.006
https://doi.org/10.1016/j.jss.2006.06.006
https://doi.org/10.1109/32.637387
https://doi.org/10.4018/978-1-59904-135-3
https://doi.org/10.4018/978-1-59904-135-3
https://doi.org/10.1016/j.jss.2015.01.028
https://doi.org/10.1145/3019612.3019784
http://ksiresearchorg.ipage.com/seke/seke17paper/seke17paper_126.pdf
http://ksiresearchorg.ipage.com/seke/seke17paper/seke17paper_126.pdf
https://doi.org/10.1016/j.eswa.2008.07.062
https://doi.org/10.1145/2020390.2020407

