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1. Introduction 

Due to the rapid expansion of human population and their needs, water supply management becomes 
challenging to be done effectively [1]. In real application, one of the most important terms for the 
government water company is satisfying the consumer demand, even though it might cause energy 
wastage issue and financial problem for the company. Therefore, a precise, efficient and accurate 
forecasting method is required for cost-effective and sustainable management planning. Moreover, water 
consumption has significantly increased in the last decades. It is also known that season affects water 
consumption in the community. Hence, it indicates trend and seasonal pattern in the water demand 
data. 

Previous researches showed that water demand forecasting can use either linear approaches e.g. linear 
regression or ARIMA [2]-[3] or nonlinear approach [4]–[8]. Otherwise, decomposing patterns in time 
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 Water supply management effectively becomes challenging due to the 
human population and their needs have been growing rapidly. The aim of 
this research is to propose hybrid methods based on Singular Spectrum 
Analysis (SSA) decomposition, Time Series Regression (TSR), and 
Automatic Autoregressive Integrated Moving Average (ARIMA), known 
as hybrid SSA-TSR-ARIMA, for water demand forecasting. Monthly 
water demand data frequently contain trend and seasonal patterns. In this 
research, two groups of different hybrid methods were developed and 
proposed, i.e. hybrid methods for individual SSA components and for 
aggregate SSA components.  TSR was used for modeling aggregate trend 
component and Automatic ARIMA for modeling aggregate seasonal and 
noise components separately. Firstly, simulation study was conducted for 
evaluating the performance of the proposed methods. Then, the best hybrid 
method was applied to real data sample. The simulation showed that hybrid 
SSA-TSR-ARIMA for aggregate components yielded more accurate 
forecast than other hybrid methods. Moreover, the comparison of forecast 
accuracy in real data also showed that hybrid SSA-TSR-ARIMA for 
aggregate components could improve the forecast accuracy of ARIMA 
model and yielded better forecast than other hybrid methods. In general, it 
could be concluded that the hybrid model tends to give more accurate 
forecast than the individual methods. Thus, this research in line with the 
third result of the M3 competition that stated the accuracy of hybrid 
method outperformed, on average, the individual methods being combined 
and did very well in comparison to other methods.  
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series data into smaller subparts can simplify the forecasting process in time series analysis [9]. Hence, a 
forecasting method that can capture and reconstruct every pattern of components in the data was needed. 
One of the approaches which can decompose data into trend, seasonal, and oscillatory components is 
Singular Spectrum Analysis or SSA [10]-[11]. Some researchers have proven that forecasting accuracy 
can be improved by extracting the pattern in data using SSA. Zhang et al. [12] used SSA-ARIMA for 
forecasting annual runoff data, and they concluded that the SSA-ARIMA model produced more accurate 
forecast than other individual methods. Moreover, Liu et al. [13] also applied SSA-ARIMA for software 
reliability forecasting and obtained the same conclusion. In addition, another hybrid models such as 
SSA-NN [14]–[16] and SSA-ANFIS [17]-[18] were also widely developed for water demand forecasting. 

This research focused on propose hybrid models based on SSA, Time Series Regression (TSR), and 
Automatic ARIMA, known as SSA-TSR-ARIMA, for water demand forecasting. Due to automatic 
forecasting issue in big data analysis, Automatic ARIMA was used because it simplified model, generated 
models quickly and more robust to unusual time series patterns without user intervention [19]. Two 
group of different hybrid methods were developed and proposed, i.e. hybrid methods for individual SSA 
components and for aggregate SSA components. Finally, a comparative study about forecast accuracy 
was done by applying other forecasting methods, such as ARIMA for actual data, and hybrid SSA-
ARIMA for individual and aggregate SSA components. 

2. Method 

This section discusses about the literature review of the methods that be used in this study. 

2.1. Autoregressive Integrated Moving Average (ARIMA) 

The Box-Jenkins procedure is one of the most popular procedures for time series analysis and 
forecasting application with ARIMA model [20]. The general form of 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝒔 is 
[21]. 

( ) ( )(1 ) (1 ) ( ) ( )S d S D S
p P t q Q tB B B B Z B B a     

  

where 

2
1 2( ) (1 ... )p

p pB B B B       , 

2
1 2( ) (1 ... )q

q qB B B B       , 

2
1 2( ) (1 ... )S S S PS

P PB B B B      , 

2
1 2( ) (1 ... )S S S QS

Q QB B B B      . 

In general, the Box-Jenkins procedure consists of model identification, estimation and testing of 
parameter, diagnostic checking and selecting best model, and forecasting step [21]. 

2.2. Automatic ARIMA 

Recently, automatic forecasting becomes one of the main topics in time series analysis particularly 
forecasting in big data analysis. One of the most popular automatic forecasting algorithms was developed 
based on ARIMA models, such as auto.arima function in R software that be proposed by Hyndman & 
Khandakar [19]. This research used this auto.arima function for applying automatic forecasting. Classical 
ARIMA methods sometimes tend to be subjective and complicated, particularly in model identification 
step using Autocorrelation function (ACF) and Partial Autocorrelation function (PACF) plot.  

The determination of the best ARIMA model by auto.arima function is based on the minimum of 
AIC value. Stationarity condition in this automatic ARIMA method is tested by unit root test, i.e. 
Augmented Dickey-Fuller (ADF) test. Automatic ARIMA does not use ACF and PACF plots in 
determining the best model. This function tries one by one for each possible model, where order p and 
q start from 0 to 5, P and Q start from 0 to 2, d is 0 to 2, and D is 0 or 1 [19]. 
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2.3. Singular Spectrum Analysis  

Singular Spectrum Analysis (SSA) is known as a powerful method for time series analysis. SSA 
combines elements of classical time series analysis, multivariate statistics, multivariate geometric, 
dynamical system, and signal processing [22]. The main purpose of SSA is to decipher the original series 
into a small number of identifiable components such as trend, seasonal, and oscillatory, followed by the 
reconstruction of the original series [23]. There are two main stages in SSA as follows: 

2.3.1. Decomposition (embedding and singular value decomposition) 

Given a real-valued time series 1 2( , ,..., )nY Y Y  and L is an integer number denoted for window length, 

1 L n  . In embedding step, the original time series will be mapped into a trajectory matrix which 

illustrated as follows, 

1 2 3

2 3 4 1

1 3 4 5 2

1 2

[ : ... : ]

K

K

K K

L L L n

f f f f

f f f f

X X f f f f

f f f f





 

 
 
 
  
 
 
 
 

X

  

where 1K n L    and T
1 1( , ,..., ) ,  1i i i i LX f f f i K     . Let 1 2, ,..., L    be the eigenvalues of 

the covariance matrix TS XX  and 1 2, ,... LU U U  are the corresponding eigenvectors. That eigenvalues 

are arranged in a decreasing order, 1 2 ... 0L      . In second step, the SVD of matrix X  can be 

stated as follows, 

1 2 ... d   X X X X
  

where T
i i i iU VX  . The set  ( , , )i i iU V is called i-th eigentriple to SVD. 

2.3.2. Reconstruction (grouping and diagonal averaging) 

In grouping step, the set of indices {1, 2,..., }d  will be partitioned into m disjoint subsets 1 2, ,..., mI I I  

and let 1 2{ , ,... }pI i i i . Then the resultant matrix IX  corresponds to group I defined as

1 1
...

pI i i i   X X X X . Computing these matrixes for groups 1 2, ,..., mI I I I  and lead to 

decomposition form 
1 2

...
mI I I   X X X X . The set 1 2, ,..., mI I I  are called eigentriple groupings.  

In the last step, each elementary matrix in the grouped decomposition is transformed into a new 
component series. Let i jy  be the element of matrix Y  (𝐿 × 𝐾 matrix), 1 ≤ 𝑖 ≤ 𝐿, 1 ≤ 𝑗 ≤ 𝐾, for    

𝐿 ≤ 𝐾. Given the values of * min( , )L L K , * max( , )K L K  and 1n L K   . Let *
ii j jy y . If 

L K  and let *
i j j iy y  if L K  otherwise. Diagonal averaging transforms matrix Y  into the series 
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The equation corresponds to the average matrix element over the ‘antidiagonals’ 1i j k   . If the 

averaging diagonal is applied to the matrix IkX  then a reconstructed series ( ) ( )( ) ( )
1 2( , ,..., )

k kk k
nF f f f  

with length n will be obtained. Therefore, the initial series can be reconstructed by summation as follows, 

( )

1

   , 1,2,. ..,
m

k
j j

k

f f j n


 
  

2.4. Time Series Regression 

Basically, TSR is the same as regression, particularly with regression with dummy variables. In this 
research, the TSR model is a model for handling trend and seasonal components separately. In general, 
the trend is defined as the long-term direction that is continuously up or down, and seasonality is a 
repeating pattern with the same period, for example, 12 months per year [24]. 

The TSR model for trend pattern can be described as polynomial regression as follows: 

2
0 1 2

ˆ ... m
t mT t t t       

  

whereas, the TSR model for seasonal pattern in general is written as follows: 

1 1 2 2
ˆ ...t s sS D D D     

  

where 𝐷𝑗 (for 𝑗 = 1,2,… , 𝑠) are dummy variables for seasonal component. 

2.5. Hybrid SSA-ARIMA 

The SSA method decomposes the data (𝑍𝑡) into several subpart series (𝑃𝐶𝑡). The hybrid SSA-
ARIMA model applies the idea of individual and aggregate component modeling. In this research, the 
framework of individual and aggregate SSA-ARIMA modeling are shown in Fig. 1 and Fig. 2, 
respectively [12]-[13].  

 

Fig. 1.  Hybrid SSA-ARIMA of individual component for time series forecasting 

The individual forecasting is done by modeling each series using the ARIMA method and calculate 
the fitted value for each eigentriple. However, specifically for eigentriple which has noise pattern, the 
modeling is done in aggregate, i.e. noise eigentriple is combined into noise component (𝑁𝑡). This 
component will be fitted using auto ARIMA, so the forecast result of noise component (𝑁̂𝑡) is formed. 
Finally, the forecast was made by each SSA-component ftting have been summed up to make final 
forecast (𝑍̂𝑡). 

Fig. 2 represents the framework of Aggregate SSA-ARIMA modeling. In contrast to individual SSA-
ARIMA modeling, this model is performed by incorporating similar eigentriple. Eigentriples that have 
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a similar pattern will be summed into one component. Eigentriples that have a trend pattern, summed 
into trend component (𝑇𝑡), and so do for seasonal (𝑆𝑡) and noise (𝑁𝑡) component. Automatic ARIMA 
modeling is done on each SSA-component to produce the fitted values of trend (𝑇̂𝑡), seasonal (𝑆̂𝑡), and 
noise (𝑁̂𝑡) component. The summation of each SSA-component fitting will lead to final forecast of the 
series (𝑍̂𝑡). Both in individual and aggregate modeling, the trend, seasonal, and noise series will be 
approximated by Automatic ARIMA. 

 

Fig. 2.  Hybrid SSA-ARIMA of aggregate component for time series forecasting 

2.6. The Proposed Hybrid SSA-TSR-ARIMA 

The proposed hybrid method is mainly based on TSR for fitting trend component in aggregate 
modeling scenario. The idea is motivated by the trend component of SSA-decomposition tend to follow 
polynomial trend pattern. Thus, TSR as equation (6) will capture well this pattern. In general, the 
proposed hybrid SSA-TSR-ARIMA method is illustrated as Fig. 3. 

 

Fig. 3.  The proposed hybrid SSA-TSR-ARIMA for time series forecasting 

2.7. Model Evaluation 

 The model evaluation is done based on both in-sample (training) and out-sample (testing) 
criteria. Automatic ARIMA uses in-sample criteria for selecting the best model based on the smallest 
AIC or Akaike's Information Criterion as follows: 

2ˆln 2aAIC n C 
  

where 2ˆ
a  is maximum likelihood estimation of 2

a , and C is number of parameters. 
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 Furthermore, the best model in this research was selected based on out-sample (testing) criteria as 
known as cross-validation principle. Two criteria in testing data for determining the best model are Root 
Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) that be calculated as follows:  

2

1

1 ˆ( ( ))
R

n r n

r

RMSE Y Y r
R





 
  

1

ˆ ( )1
100%

R
n r n

n rr

Y Y r
MAPE

R Y






 

  

where R is the forecast periods [25]. 

2.8. Real Data of Water Demand in Wonogiri Regency, Indonesia 

PDAM or Regional Company for Water Utility is one of the regional owned business units which is 
engaged in distributing and providing fresh water for the public. PDAMs exist in every province, district, 
and municipality throughout Indonesia. Wonogiri regency is one of the districts in Central Java province, 
Indonesia. The water needs are managed by PDAM in Wonogiri Regency based on the instruction of 
the Minister of Home Affairs. Water demand could be detected by monitoring the amount of fresh 
water consumed by customers. The calculation of water demand in Wonogiri is done every 20th date of 
the corresponding month. Water demand data in February is calculated from 21 January to 20 February. 
The water demand in March is calculated from February 21 to March 20, and so on. Then, the collected 
time series data will be used as a representative data on this work. 

3. Results and Discussion 

This study conducted simulation and empirical study, and this section discussed about the results 
and analysis of both studies. 

3.1. Simulation study 

The purpose of the simulation study is to know the performance of the proposed hybrid method to 
forecast the time series with trend and seasonal pattern. As discussed in the previous section, the hybrid 
SSA-ARIMA method will be applied individually (written as first model or M-1) or aggregately (written 
as second model or M-2), and the proposed hybrid SSA-TSR-ARIMA method in aggregate scheme 
(written as third model or M-3). This study simulation was conducted by assuming for monthly data 
with periods from January 2006 to December 2017 or generated for 144 observations where 120 initial 
data as training dataset and last 24 data as testing dataset. The simulation data that containing trend, 
seasonal, and noise components were generated as follows:  

*
t t t tY T S N  

  

where 0.5 tT t   for trend, 
2

7.5sin
12

t

t
S

 
  

 
 for seasonal, and * ~ (0,1)tN N  for noise components. 

The time series plot of the simulation data is shown in Fig. 4. 

Each original series was decomposed by using SSA. In this simulation data, 50 eigentriple formed 
with 4 main eigentriples and 46 noise eigentriples. The main eigentriple consists of two trend eigentriples 
and two seasonal eigentriples. Similar patterned eigentriples were grouped in to the same component. 
In general, the trend component consists of two trend-patterned eigentriples, a seasonal component 
consisting of two seasonal-patterned eigentriples, and a noise component composed of 46 eigentriple 
noise patterns. 
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Fig. 4.  Time Series Plot of Simulation Data that contain trend and seasonal 

Then, these decompositions series were modeled using hybrid SSA-ARIMA in individual and aggregate 
scheme, and hybrid SSA-TSR-ARIMA in aggregate scheme. The results were showed at Table 1. 

Table 1.  Forecast Accuracy of Hybrid Methods in Simulation Data 

Method  ARIMA Model AIC 
Testing Dataset 

MAPE RMSE 

M-1: SSA-ARIMA (individually)   12.69% 11.09 

1PC
 

 (1,2,1) -722.22   

2PC
  (1,2,4)(1,1,0)12 -555.60   

3PC
  (0,0,0)(1,1,0)12 187.17   

4PC
  (3,2,0) -567.71   

*
tN

 
 (0,0,1) 309.49   

M-2: SSA-ARIMA (aggregate)   7.59% 5.66 

tT
 

 (1,2,1) -722.22   

tS
  (0,1,0)(1,1,0)12 -83.14   

*
tN

 
 (0,0,1) 309.49   

M-3: SSA-TSR-ARIMA (aggregate)   2.83% 2.20 

tT
  

ˆ* tT  -   

tS
  (0,1,0)(1,1,0)12 -83.14   

*
tN

 
 (0,0,1) 309.49   

 2ˆ* 0.824 0.467 0.000266 tT t t    

 

Table 1 showed that the proposed hybrid SSA-TSR-ARIMA in aggregate scheme outperformed 
other hybrid models, i.e. yielded the lowest MAPE and RMSE. Hence, it indicated that in time series 
data containing trend and seasonal patterns, the hybrid SSA-TSR-ARIMA under aggregate scheme 
produced the most accurate forecast at the testing dataset.  

3.2. Water Demand Forecasting  

 Consumer behavior in water demand can be seen from the characteristics of water consumption 
data. This information can be used to make water resources planning to minimize the waste of water 
resources and company losses. The monthly of water demand by community in Wonogiri regency, 
Indonesia during the period January 2006 to August 2017 is shown in Fig. 5.  
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Fig. 5.  Time Series Plot of Monthly Water Demand in Wonogiri Regency, Indonesia 

The monthly water demand increased over time and has seasonal pattern (Fig. 5). There are 140 
observations with average monthly water demand of 428.7 thousand m3. In this period, the smallest 
demand occurred in March 2006 and the highest is in July 2017, i.e. 299.4 and 576.3 thousand m3, 
respectively. Moreover, due to dry season in Wonogiri regency, the average water demand in August to 
November tends to be higher than other months.  

3.2.1. Hybrid SSA-ARIMA 

SSA decomposition of the monthly water demand data generated 50 eigentriples (as shown in Fig. 
6a), which in the SVD stage produces 3 main eigentriples with 1 trend eigentriple and 2 seasonal 
eigentriples (as shown in Fig. 6b). The noise component consists of 4 to 50 eigentriples. Fig. 6 and Fig. 
7 illustrate the reconstruction results of trend, seasonal, and noise components of monthly water demand 
data. 

(a) 

 

(b) 

 

Fig. 6.  Eigentriples (a) and Principal Component (b) plot of water demand  
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Due to the results of simulation study showed that hybrid SSA-ARIMA in aggregate scheme give 
better forecast than individual scheme, then monthly water demand data were analyzed only by hybrid 
SSA-ARIMA in aggregate scheme. Each component was modeled using Automatic ARIMA and the 
best model for trend, seasonal, and noise components were ARIMA(1,2,0), ARIMA(1,0,0)(1,1,1)12, and 
ARIMA(1,0,2)(1,0,0)12, respectively. The MAPE and RMSE of this hybrid model in training dataset 
were 5.26 and 45.900, respectively, whereas at testing dataset were 13.02 and 79.039, respectively. 
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Fig. 7.  Grouping of Trend (a), Seasonal (b), and Noise (c) Components of Water Demand Data  

 



247 International Journal of Advances in Intelligent Informatics   ISSN 2442-6571 

 Vol. 4, No. 3, November 2018, pp. 238-250 

 

 Suhartono et al. (Hybrid SSA-TSR-ARIMA for water demand forecasting) 

3.2.2. Hybrid SSA-TSR-ARIMA 

 The main difference between hybrid SSA-TSR-ARIMA and SSA-ARIMA in aggregate scheme is 
the modeling of trend component using polynomial regression instead of ARIMA model. The model 
for trend component obtained from TSR is, 

2ˆ 318079 1225,87 4, 4867tT t t  
  

Moreover, the MAPE and RMSE in training dataset of this hybrid SSA-TSR-ARIMA method were 
3.82 and 20.398, respectively, whereas at testing dataset were 9.37 and 58.751, respectively. 

3.2.3. The Results of ARIMA Model 

The best ARIMA models for monthly water demand data was ARIMA(2,1,[35])(1,1,0)12. This model 
has fulfilled white noise and normally distributed assumptions for the residual. The equation of this 
ARIMA model is as follows: 

* * * * * * * *
1 2 3 12 13 14 15

* * * *
24 25 26 27 35

0.34 0.36 0.29 0.71 0.12 0.25 0.20 

        0.29 0.10 0.10 0.08 0.50 

t t t t t t t t

t t t t t t

Z Z Z Z Z Z Z Z

Z Z Z Z a a

      

    

       

    
 

where * 1/t tZ Z  . The MAPE and RMSE in training dataset of this ARIMA model were 4.24 and 

22.940, respectively, whereas at testing dataset were 9.64 and 60.836, respectively. 

3.2.4. Model Selection and Forecast Accuracy Comparison 

Three forecasting methods have been applied for forecasting monthly water demand data in Wonogiri 
regency, i.e. ARIMA, hybrid SSA-ARIMA, and hybrid SSA-TSR-ARIMA methods. The actual and 
forecasted values of water demand at testing dataset are shown in Fig. 8. 

 

Fig. 8.  The Actual and Forecast Values of Water Demand at Testing Dataset  

Moreover, a numerical evaluation based on RMSE and MAPE for both training and testing datasets 
to provide more precise comparison on the performance of this water demand forecasting from each 
model was done and presented in Table 2. Column ratio of MAPE and RMSE showed the ratio values 
to ARIMA model.  

In general, the results at Table 2 provided two contradictive conclusions about the hybrid or 
combination methods (or complex method) compared to individual or simple methods. The first 
comparison between ARIMA and hybrid SSA-ARIMA showed that ARIMA as a simple method yielded 
more accurate forecast than hybrid SSA-ARIMA as a complex method. Moreover, this first result was 
in line with the first result of M3 competition that stated statistically sophisticated or complex methods 
do not necessarily provide more accurate forecasts than simpler ones [26]. Otherwise, this first result did 
not in line with the results from Zhang et al. [12] and Liu et al. [13]. 
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Table 2.  Comparison Results of Accuracy Performance for each Model 

Model 
Training Dataset Testing Dataset Ratio 

MAPE RMSE MAPE RMSE MAPE RMSE 

SSA-ARIMA 5.26 45.900 13.02 79.039 1.35 1.32 

SSA-TSR-ARIMA 3.82 20.398 9.37 58.751 0.97 0.97 

ARIMA 4.24 22.940 9.64 60.836 1.00 1.00 

 

Furthermore, the second comparison between hybrid SSA-TSR-ARIMA, hybrid SSA-ARIMA, and 
ARIMA showed that hybrid SSA-TSR-ARIMA method as combination method provided better 
forecast than hybrid SSA-ARIMA as a simpler method and ARIMA as an individual method. Thus, 
this second result was in line with the third result of M3 competition that stated the accuracy when 
various methods were being combined outperforms, on average, the individual methods being combined 
and did very well in comparison to other methods [26]–[28]. In addition, this second result also showed 
that forecaster must understand well the advantage of each model before combining, particularly the 
relation between model and the time series pattern that could be handled it.  

In general, the results on Table 2 showed that the best method for water demand forecasting in 
Wonogiri regency was the proposed hybrid SSA-TSR-ARIMA in aggregate scheme. Moreover, this 
proposed method provided more accurate forecast both in training and testing dataset by using MAPE 
and RMSE criteria. The greater values of MAPE and RMSE in testing dataset compared to in training 
dataset was caused by the fluctuation of trend behavior change lower in testing dataset. If there is such 
a change due to a special event, the resulting forecast of SSA decomposition tends to be grouped into 
other components and can produce misleading forecasts [29]. 

4. Conclusion 

This research proposed a hybrid SSA-TSR-ARIMA method for water demand forecasting. The 
results of simulation study showed that hybrid SSA-ARIMA method in aggregate scheme yielded more 
accurate forecast than individual scheme. Moreover, the simulation study also showed that the proposed 
hybrid SSA-TSR-ARIMA method in aggregate scheme provided better forecast than hybrid SSA-
ARIMA method both in aggregate and individual scheme. Additionally, the results of simulation study 
also showed that SSA decomposition was appropriately applied on time series data containing trend, 
seasonal, and noise components [30]. 

Furthermore, the results of real data about monthly water demand forecasting in Wonogiri regency 
showed that the proposed hybrid SSA-TSR-ARIMA in aggregate scheme as a combining some 
individual methods provided more accurate forecast than hybrid SSA-ARIMA as a simpler method and 
ARIMA as an individual method. Thus, these results in line with the third result of M3 forecasting 
competition that be done by Makridakis & Hibon [26]. Moreover, this study also clearly shown that by 
applying TSR for fitting the trend component of SSA decomposition can increase the accuracy of the 
prediction compared to only applying ARIMA directly to actual data or to each SSA component. This 
leads a suggestion for further research, particularly by involving nonlinear methods (such as neural 
networks, deep learning networks, or ANFIS) when combining to SSA for handling nonlinearity issue 
in time series forecasting. 
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