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1. Introduction 

Consider the following unconstrained optimization objective function; 

 nRxxf :)(min   

where RRf n : is a continuously differentiable function. nR is denoted as n dimensional Euclidean 

space [1]. With any nRx 0  as an initial guess, generally, a sequence of { kx } is generated by employing 

the CG iterative method given by; 

,...2,1,0,1  kdxx kkkk    

where kx is the thk  iterative point and 0k is a step size while the search direction kd is defined by;  
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The scalar k is called the CG coefficient and kg is the gradient of f at point kx . Step size 0k is 

the stepsize determined by using exact line search, given as; 
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 One of the popular approaches in modifying the Conjugate Gradient (CG) 
Method is hybridization. In this paper, a new hybrid CG is introduced and 
its performance is compared to the classical CG method which are Rivaie-
Mustafa-Ismail-Leong (RMIL) and Syarafina-Mustafa-Rivaie (SMR) 
methods. The proposed hybrid CG is evaluated as a convex combination of 
RMIL and SMR method. Their performance are analyzed under the exact 
line search. The comparison performance showed that the hybrid CG is 
promising and has outperformed the classical CG of RMIL and SMR in 
terms of the number of iterations and central processing unit per time.  
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Exact line search is used because of its well-known ability to provide the optimal step size [2]. 
Recently, studies have shown that the newer technologies with faster processors and better equipment 
have successfully eliminated the speed problems often suffered by exact line search, as demonstrated by 
Rivaie et al. [1]. This motivates plenty of its applications for solving unconstrained optimization 
problems. From [3], [4], a classical CG method introduced were;  
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where the kg and 1kg  are the abbreviations of )( kxg and )( 1kxg . They are the gradients of )(xf at 

points kx and 1kx  respectively. Euclidean norm of the vectors is denoted by . . These corresponding 

methods are known as RMIL(Rivaie-Mustafa-Ismail-Leong) [3] and SMR (Syarafina-Mustafa-Rivaie) 
[4]. Different CG method yield different performance of the CG algorithm due to the different choices 
for calculating the CG coefficients. Some well known CG formulas are; 
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These corresponding methods are known as HS (Hestenes and Steifel [5]), FR (Fletcher and Reeves 
[6]), PRP (Polak and Ribiere [7]), CD (Conjugate Descent by Fletcher [8]), DY (Dai and Yuan [9]), 
and LS (Liu-Storey [10]), respectively. Due to the strictly convex quadratic function )(xf , all of these 

methods (7-12) have finite convergence properties under exact line search. From all the mentioned 
methods, CG coefficient in (8), (10) and (11) have strong convergence properties but not excellent in 
practical performance due to the jamming problem. Meanwhile, methods in (7), (9) and (12) have better 
numerical performance though lacking in convergence properties [11]. Conjugate gradient method can 
be classified into three different groups; classical, scaled, and hybrid CG method [12]. Methods 
mentioned in (7-12) are called classical CG due to their simple approaches. Detailed discussions are 
available in [13]–[24]. Meanwhile, some well known hybrid conjugate algorithms are;  
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From (13)-(16) HDY is a modification effort from Dai and Yuan [9] combining its algorithm with 
Hestenes and Steifel [5], HHUS was introduced by Hu and Storey, HLSCD is the combination of LS 
[10] and CD [8], and HJHJ is a hybrid CG from Jinbao-Han-Jiang [25]. In this paper, the main objective 
is to compare the performance of classical and hybrid CG methods. The idea is to combine different 
conjugate algorithms to use the projections to form a new hybrid convex-combination algorithm in 
order to avoid jamming [11] and compare with the original coefficients used for its hybridization. Hence, 
SMR and RMIL are combined in order to introduce a hybrid CG and its performance is compared 
between SMR and RMIL. SMR has good computational properties while RMIL has strong convergence 
properties [1], [2] both under exact line search. The combinations of all the good criteria of SMR and 
RMIL are used in order to obtain a better practical algorithm both in numerical and convergence 
analysis. Section two will discuss the motivation of the algorithm and the new hybrid conjugate gradient 
algorithm. Section three presents the convergence analysis. Numerical experiments are discussed in 
section four, and the last section concludes all the works in this paper. 

2. Method 

Hybrid-Syarafina-Mustafa-Rivaie (HSMR) method is the idea of combining SMR and RMIL 
methods together. HSMR method is introduced as Hybrid-Syarafina-Mustafa-Rivaie method and is 
known as; 

}},min{,0max{ RMIL
k

SMR
k

HSMR
k     

The idea was initiated by using the restart strategy proposed in Jinbao et al. [25]. If the value tends 
to be negative values, it is preferable to set 0k , which implies a restart along kg . If 0k , the search 

direction kd from (3) tend to almost opposite to 1kd . Then, the conjugate gradient (CG) coefficient to

0k , the two consecutive search directions are prevented from tending to be almost opposite [26]. 

The new algorithm of HSMR
k is given as in Algorithm 1 (Fig. 1). 

 

Fig. 1. Conjugate gradient algorithm 

Algorithm 1: Conjugate gradient method 

Step 1: Initialization. Set  and select nx 0 , 00 gd  , if 00 g , stop.  

Step 2: Compute HSMR
k based on (17). 

Step 3: Compute search directions kd  based on (3).  If kg , then stop.  

     Otherwise, go to the next step. 

Step 4: Compute for k based on exact line search (4) . 

Step 5: Updating new initial point using (2).  

Step 6: Convergence test and stopping criteria. If )()( 1 kk xfxf   and kg  then, stop.  

           Otherwise go to Step 2 with 1 kk . 

 

0k
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3. Results and Discussion 

3.1. Convergence Analysis 

In this section, the convergence analysis for HSMR based on exact line search in (4) is analysed. An 
algorithm has to possess both sufficient descent condition and global convergence properties for a 
method to be converged in order to have a good practical algorithm. The convergence analysis for SMR 
and RMIL can be reached out in Rivai et al. [3] and Mohamed et al. [4]. 

3.1.1. Sufficient Descent Condition 

Sufficient descent condition holds when 

0 and 0for   
2

 CkgCdg kk
T
k   

Theorem 1: Consider a CG method with search direction (3) and HSMR
k  defined as (17), then, condition 

(18) will hold for all 0k . 

Proof: From (3), know that 2
000 gCdgT  . Hence, condition (18) holds. In order to show condition 

(18) also hold for 1k , multiply (3) by T
kg . Then,  
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Since the line search is exact, it is known that 01 k
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sufficient descent direction. Hence, the descent condition holds i.e., 2
kk

T
k gCdg  . The proof is 

completed.   

3.1.2. Global Convergence Properties 

From Rivai et al. [3] and Mohamed et al. [4], it is known that SMR
k and RMIL

k can be simplified to 
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et al. [3], Mohamed et al. [4], and Rivaie et al. [19],  in the analysis of global convergence properties, 
the following assumption is needed. 

Assumption 1 

 f is bounded below on the level set nR  and is continuous and differentiable in a neighborhood N  of 

the level set  )()(| 0xfxfRx n ?  at the initial point 0x . 
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 The gradient )(xg  is Lipschitz continuous in N , so, there exists a constant 0L  such that; 

yxLygxg  )()(  for any Nyx ,  .    

Under this assumption, the following lemma is obtained, which was proved by Zoutendijk [27].   

Lemma 1: Suppose that Assumption 1 holds. Consider any CG methods of the form (3) where kd  is a 

descent search direction and k  satisfies the exact minimization rules. Then the following conditions 

known as Zoutendijk conditions hold; 
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The proof of this lemma can be seen from Dai and Yuan [28]. By using this lemma; the following 
convergence theorem of the conjugate gradient method can be obtained by using (20). 

Theorem 1: Suppose that Assumption 1 holds. Consider any CG methods in the form of (3) and (2) 
where k  is obtained by the exact minimization rules. Also, suppose that Assumption 1 and the descent 

condition hold. Then either 
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By completing the square, the equation becomes  
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Applying (20), yields 
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From (23), noting that  
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Then, from (21) and (23), it follows; 
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in Lemma 1. Therefore, the proof is completed. 

Corollary 1: If
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This contradicts the Zoutendijk [27] conditions. Hence the corollary holds.  

 

3.2. Discussion 

This section shows the numerical performance of the new coefficient HSMR compared with its 
classical combination in (5) and (6). In this research, artificial problems are chosen from the small to 
large-scale twenty-one test functions as listed in Table 1. The list is considered from Andrei [29]. A 
large-scaled problem is chosen in order to detect a cynical observer preventing the algorithm being tuned 
in particular functions [29]. For each of the test functions selected, random initial points are chosen in 
order to test the global convergence properties along with the robustness of the methods. On the other 
hand, for each of the random initial points chosen, they are tested on various dimensions from two to 
thousand dimensions [30], [31]. Points chosen can also be used to test the global convergence properties 
and the robustness of the methods. Results analyses are based on MATLAB subroutine program on 
workstation Intel Core i7, 2.2 GHz tested on the number of iterations and central processing time per 

unit. The stopping criterion is set to 610kg , where 610 . Performance profiles based on Dolan and 

More [32] are shown graphically in figures below. The results summaries for all SMR, RMIL, and 
HSMR methods are shown in Table 2.  

 



ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 156 
 Vol. 5, No. 2, July 2019, pp. 150-159 

 

 Mohamed et al. (A comparison on classical-hybrid conjugate gradient method under exact line search) 

Table 1.  List of test functions 

Function Initial Points 
Camel Function- Three Hump (-1,1), (1,-1), (-2,2), (2,-2). 

Camel Function- Six Hump  (8,8), (-8,-8), (10,10), (-10,-10). 

Booth Function (10,10), (25,25), (50,50), (100,100). 

Dixon and Price Function (2,-2), (5,-5), (10,-10), (13,-13). 

Treccani Function (5,5), (10,10), (50,50), (100,100).  

Zettl Function (5,5), (10,10), (20,20), (50,50). 

Leon Function (5,5), (10,10), (-5,-5), (-10,-10). 

Quartic Function (2,2,2,2), (5,5,5,5), (8,8,8,8), (10,10,10,10). 

Extended Freudstein and Roth Function (1,…,1), (3,…,3), (5,…,5), (7,…,7) 

Extended Himmelblau Function (10,…,10), (50,…,50), (100,…,100), (200,…,200) 

Extended Rosenbrock Function (13,…,13), (16,…,16), (20,…,20), (30,…,30) 

Extended Denschnb Function (5,…,5), (8,…,8), (13,…,13), (25,…,25) 

Extended White and Holst Function (-3,…,-3), (3,…,3), (6,…,6), (9,…,9) 

Extended Beale Function (5,…,5), (10,…,10), (2,…,2), (8,…,8) 

Cube Function (-3,…,-3), (3,…,3), (6,…,6), (9,…,9) 

Extended Tridiagonal 1 Function (10,…,10), (12,…,12), (17,…,17), (20,…,20) 

Shallow Function (10,..,10), (25,…,25), (50,…,50), (100,…,100) 

Generalized Quartic Function (10,..,10), (50,…,50), (100,…,100), (200,…,200) 

Fletchcr Function (3,…,3), (5,…,5), (2,…,2), (9,…,9) 

Extended Maratos Function (10,..,10), (50,…,50), (100,…,100), (150,…,150) 

Diagonal 4 (10,..,10), (50,…,50), (100,…,100), (200,…,200) 

 

Performance comparison involving tables are very hard to interpret in order to benchmark methods’ 
efficiency. Thus, the best way to discuss the performance of each method is by using the performance 
profile as introduced by Dolan [33]. The )(tPs from the performance profile is the fraction of the problem 

with a ratio performance t . A solver has higher efficiency when its value )(tPs  is higher. In a set of 

problem P  and a set of optimization solver S , a performance comparison of the problem Pp by a 

particular algorithm Ss is measured. Let, spt , be the number of iterations or CPU time required when 

solving a problem Pp with the solver Ss . The performance ratio is defined by
 Sst

t
r

sp

sp
sp




:min ,

,
, . 

From this expression, it is assumed that ],1[, Msp rr  , where spM rr , and Msp rr , only when the problem 

p  is not solved by the solver s . Then, graphically, a graph of )(tPs versus ],1[ Mrt  is plotted.  

Table 2.  Results summaries of SMR, RMIL, and HSMR 

Method Total NOI Total CPU time  Total CPU/ Total NOI 

RMIL 50811 257.1624 0.0051 

SMR 195746 345.2154 0.0018 

HSMR 29791 1784.5037 0.0599 

 

From Fig. 2, the graph shows that HSMR, SMR, and RMIL are quite identical to each other in 
terms of their competitiveness and HSMR slightly reach 1 at the top faster than SMR and HSMR.  In 
a graph of performance profile, the smallest performance ratio is 1 and it will be located at the most left 
of t - axis, hence, the top curve represents the most efficient method. Though the values displayed in 

Table 2 may be used to describe the methods’ efficiency, this way of comparison is not very fair since the 
presence of ‘NAN’ in some problems are not taken into account. 
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Fig. 2.  Performance Profile for SMR, HSMR, and RMIL under Exact Line Search 

From Fig. 2, the performance profile showed indicates the comparison of each of the coefficient 
performances in terms of Number of Iterations (NOI) and Central Processing Time per Unit (CPU 
time) under exact line search. The top left curve indicates the fastest coefficient reaching the solution 
point while the top right curve shows the ability of the coefficient can solve the test functions used. 
Based on these curves, it is shown that SMR and HSMR outperform the RMIL under exact line search.   

4. Conclusion 

In this paper, a hybrid CG method of HSMR method is introduced as a combination of SMR and 
RMIL. All three methods are compared and the results show that the hybrid version has better 
performance due to inherit the good characteristics from both SMR and RMIL. The proofs showed 
that the new method fulfills the convergence properties. The application for these methods can be seen 
in [33]–[35]. For future works, these methods should be done for inexact line search approach. 
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