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1. Introduction  

The Deoxyribonucleic Acid (DNA) is a complex molecule that contains hereditary and biological 
information which is found in every organism [1]. A DNA sequence can be up to 3 billion in length and 
is composed of nucleotide bases, namely, Adenine (A), Cytosine (C), Guanine (G), and Thymine (T). 
Each nitrogenous base holds genetic information and its arrangement in a genome dictates the unique 
genetic characteristics possessed by a living being. However, researchers discovered that the DNA 
sequences of all humans are nearly identical; thus, locating and analyzing the similarities or differences 
would yield more profound knowledge on the function or relationship between the sequences [2][3]. 
Understanding the sequence’s structure and function has made significant impacts on scientific, 
biological, and medical advancements [4]. Bioinformatics is the science that applying computer science 
and mathematics to create computational techniques for the collection and analysis of biological data 
[3]. One of the major researches in the field is performing pattern matching between DNA sequences 
which leads to the discovery and understanding of biological relationships. It can be used in higher-level 
processes, such as phylogenetic trees, genetic structure prediction, and disease diagnosis [5][6]. 

Given a reference sequence length n and a query sequence with length m, and the goal of sequence 
alignment is to compute the edit distance (score) between the sequences. Then, most of the time 
determines within the pre-defined k-error thresholds to pinpoint regions of similarities that allow the 
analysis and assessment of relationship between species and organisms [5]–[8]. The reference is the 
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 The Advanced Vector Extensions 2 (AVX2) instruction set architecture was 
introduced by Intel’s Haswell microarchitecture that features improved 
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study presents an implementation of the Hyyrö’s bit-vector algorithm for 
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advantage of Single-Instruction-Multiple-Data (SIMD) computing 
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source sequence (e.g. a human genome), which can be obtained from public online GenBank sequence 
database, usually from NCBI [9]. Whereas, the query sequence is a short read that the scientists are 
interested in locating or investigating (e.g. genomic mutation or diseases) from the reference string. Edit 
distance could be defined as the number of required edit operations to make both sequences equal. 
Moreover, it can concurrently process depending on the number of sequences. Sequence alignment 
algorithms can be classified in either pairwise or multiple sequence alignment; the former aligns exactly 
2 sequences (one query, one reference), while the latter aligns 2 or more sequences simultaneously [6]. 
Researchers argue that multiple sequence alignment is more significant for scientific and research 
purposes. However, it is essential to note that multiple sequence alignment is merely an extension of 
pairwise sequence alignment. Thus, multiple sequence alignment benefits from enhancing pairwise 
sequence alignment [5]. Sequence alignment algorithms can be divided into two types; Global or Local. 
The global method aligns the sequences from end-to-end, and it is useful when identifying the total 
similarity of sequences. While, the local method aligns fragments of the sequences, and it is useful when 
identifying homologous regions [10]. 

DNA sequence alignment is a computational-heavy and time-demanding process because of its time 
complexity usually dependent on both m and n [8]. Due to the advancements on DNA Next Generation 
Sequencing (NGS) technologies, scientists were able to generate DNA sequences at a much higher rate 
and lower cost, and DNA sequence alignment could not keep up with the rapid growth of sequence 
database; therefore, There are challenged to formulate efficient bioinformatics solutions which can be 
crucial in numerous scenarios, such as DNA forensics, early diagnosis of susceptibility to genetic diseases, 
and prevention of bacteria or virus evolution [5]. This influenced the implementation of DNA sequence 
alignment solutions on High-Performance Computing (HPC) technologies that can perform intensive 
computational processes, including Field Programmable Gate Arrays (FPGA); Graphical Processing 
Units (GPU); and Cell Broadband Engines (Cell BE) [11]. However, as of today, few research works has 
been conducted that focuses on implementing sequence alignment using Intel’s iinstruction-set 
architecture to run on General Purpose Processors (GPP). 

In 2013, Intel introduced the Haswell microarchitecture, which featured Single-Instruction-
Multiple-Data (SIMD) capabilities as it supported Advanced Vector Extensions (256-bit operators), an 
extension from Streaming SIMD Extensions (128-bit operators) [12]. These instructions exploit the 
data stream’s parallelism allowing it to process multiple data simultaneously with a single instruction 
improving the throughput of floating-point operations [13][14]. The addition of SIMD instructions to 
Intel processors offers a rich instruction set, making it possible to implement a DNA sequence alignment 
algorithm to run on GPP.  

In this study, the researchers implemented an existing bit-vector algorithm that performs DNA 
sequence alignment on a query sequence and a reference sequence. This study took advantage of modern 
processors’ bit-parallel operation capabilities utilizing Intel’s SIMD technologies, specifically, Advanced 
Vector Extension 2 (AVX2), supported by at least 4th generation Intel processors (code-named 
“Haswell”). The correctness of the program was verified through multiple test cases. Furthermore, this 
paper also highlights the program’s performance with various DNA sequences by measuring execution 
time and memory consumption. The study mainly focused on implementing Hyyrö’s bit-vector 
algorithm [7] to utilize AVX2 instruction set architecture for pairwise sequence alignment. The system 
would be capable of handling up to 256 query sequence length since the query sequence and the bit-
vector variables were processed in the 256-bit vector registers. Real-world DNA sequences obtained from 
the National Center for Biological Information (NCBI) online GenBank sequence database [9] utilized 
as a data set for experimentation. 

2. Method 

2.1. Sequence Alignment Algorithms 

Several sequence alignment algorithms have been developed based on the dynamic programming 
approach; most notable are the Needleman-Wunsch and Smith-Waterman algorithm [11]. Both 
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algorithms are useful primarily for pairwise and global alignment. The advantage of using the 
Needleman-Wunsch and Smith-Waterman algorithm is the capability to locate the optimal alignment 
between the sequences. However, these algorithms demand more time to complete and run at ϴ(nm) 
[15][16]. Shehab et al. [15] developed the FDASA (Fast Dynamic Algorithm for Sequence Alignment) 
which executes the Needleman-Wunsch and Smith-Waterman algorithm with faster time complexity 
of either ϴ(3m+1) when two sequences have equal length (ϴ(3m+2)) or different lengths. Tarhio and 
Ukkonen [17] unveiled that the Boyer-Moore algorithm-generated optimal runtime speed for longer 
sequences, though increasing the k mismatch threshold will slow down the computation compared to 
other dynamic programming algorithms. Having said that, Gou [18] highlighted the difference between 
the Naïve, Knuth-Morris-Pratt, Boyer-Moore, and Rabin-Karp algorithm in terms of alignment speed 
for various sequence lengths. The results supported Tarhio and Ukkonen’s [17] argument that the 
Boyer-Moore algorithm works best for longer sequences. On the other hand, it was revealed the Rabin-
Karp algorithm is suitable for shorter sequences. Other researchers have delved into finite state machines 
to develop sequence alignment algorithms. For instance, the Aho-Corasick algorithm is one of the 
most commonly used algorithms that use an automata approach for exact multiple string matching. 
Subsequently, the Commentz-Walter algorithm was introduced as a better alternative for the Aho-
Corasick algorithm since it is a combination of both Aho-Corasick and Boyer-Moore algorithm 
[19]. In a comparative study by Vidanagamachchi et al. [19], the results invalidated prior belief 
because the Aho-Corasick algorithm attained better runtime than the Commentz-Walter algorithm 
because the latter requires more pre-processing time to construct the finite state machine. Zhu et 
al. [20] formulated the Bayes block aligner algorithm for local alignment that incorporates the 
statistics concept of Bayes inference, which involves probability and distribution, to mitigate the 
need of defining parameters and variables, such as gap penalties and scoring matrices [21]. The study 
shows that the Bayes block aligner algorithm outperformed the widely known SSEARCH algorithm 
on VAST in terms of the percentage of correctly identifying structural neighbors while achieving a 
time complexity of ϴ(n2) [20]. 

Aside from the algorithm, the edit distance metric also plays an important role in sequence alignment 
performance. Pandiselvam et al. [16] conveyed that the simplest edit distance to compute is the 
Hamming distance because it merely counts the number of differences at every position between 
sequences with equal length. The Hamming distance is mainly used for exact sequence alignment since 
it requires the sequences to have the same length and it only performs substitution operation. Another 
study from Levenshtein [22] explored the use of binary information in which mismatches can be 
corrected using deletions, insertions, and substitutions. The scoring scheme is called the Levenshtein 
distance; this metric is used for approximate sequence alignment because it is not constrained by the 
length of the sequences and offers more edit operations. It follows a dynamic programming approach 
that counts the minimum cost that is required for two sequences be equal. Research contrasted the two 
edit distance metrics and the investigation has proven that although the Hamming distance generated 
more accurate alignment results, the Levenshtein distance proved to be faster by achieving ϴ(n+m) time 
complexity compared to the former’s ϴ(nm) time complexity [16]. 

A number of researchers have implemented sequence alignment algorithms by utilizing the 
computing capabilities of the SIMD unit embedded in GPPs since it is much easier to program, more 
portable, and widely available [11]. Nataliani and Wellem [23] implemented Myer’s bit-vector algorithm 
using MATLAB to investigate the similarity of Rhodopsin protein sequence of class Aves. To conduct 
the experimentation, the data set consists of the sequences of 25 species that have Rhodopsin protein 
from class Aves that were obtained from the Universal Protein Resource (UniProt) Consortium website 
and DNA Data Bank of Japan (DDBJ) website. The study mainly features a proof-of-concept 
implementation of the bit-vector algorithm using a high-level tool. However, it falls short of evaluating 
the speed and memory performance of the application. 

Fredriksson [24] featured an alternative method to perform string matching using Myers' bit-parallel 
algorithm. The researcher proposed a new arrangement for comparing short query sequences (m < w, 
where w is the computer word size) such that the computations are performed in a row-wise approach 
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instead of a column-wise manner to minimize the wasted bits of the computer word. The algorithm was 
implemented on an Intel Pentium 4 processor, coded using Intel SSE2 instruction set architecture 
through C/C++ intrinsics. For experimentation, the researchers used a randomly generated DNA 
sequence of size 64Mb as reference sequence and short query sequences with varying lengths (i.e. 8, 16, 
32, 64, 128) to investigate the effects of varying w. The results showed that the execution time of the 
whole sequence alignment process has a linear relationship with m, and subsequently, w. The researchers 
argued that their implementation is very fast, however, it is dependent on the architecture. 

Faro and Külekci [25] promoted an exact string-matching method, called Exact Packed String-
Matching algorithm (EPSM), which aims to speed up the process for short query sequences. The idea 
is to exploit the bit-parallelism of the word RAM model; thus, the computations are performed on 
words of length w (assuming w is 32). The researchers utilized Intel SSE's specialized packed string 
matching intrinsics that includes: wscmp, wsmatch, wsblend, and wscrc. To evaluate the performance of 
the proposed algorithm, the reference sequences used were a genome sequence, a protein sequence, and 
an English natural language text, all of which are 4Mb in size; moreover, sets of 1000 query sequences 
were extracted from each corresponding reference sequence, where m would range from 2 to 32. The 
results revealed that their implementation has achieved a worst case of O(nm) time complexity and O(2k) 
memory consumption. Comparing it with other algorithms, the researchers argued that the EPSM 
algorithm is the fastest when m ≤ 32. 

Memeti and Pllana [6] presented a large-scale DNA analysis algorithm designed to be implemented 
on the Intel Xeon Phi 7120P coprocessor (code-named “Knights Corner”). The proposed algorithm was 
based on finite automata, it exploits thread-level parallelism by dividing and distributing the input DNA 
sequence across threads; moreover, it also takes advantage of bit-parallelism featured in AVX-512 
instruction set architecture. The DNA sequences of mouse, cat, dog, chicken, human, and turkey 
obtained from the GenBank sequence database of NCBI composed the reference sequence data set, while 
regex-dna benchmark with a fixed number of errors composed the query sequence data set for evaluation. 
Each test case was executed 20 times to prove the consistency of its performance. The results reported a 
maximum speedup of 10x compared to a sequential implementation on the Intel Xeon ES-2695v2 
processor. The researchers were interested to investigate the optimal number of threads for multiple 
sequence alignment. In contrast, since our research work focuses on pairwise sequence alignment, this 
approach is not applicable to our study. 

2.2. Sequence Alignment through Bit-vector Algorithm 

The prevailing method for aligning two sequences is via the dynamic programming method. Dynamic 
programming incorporates a recursive approach which usually requires an (m+1)(n+1) two-dimensional 
scoring matrix. However, the run time of the algorithms using this approach is highly dependent on 
both m and n, and sometimes even k-error threshold, and consumes ϴ(mn) space [26]. 

Myers [8] proposed an alternative solution in finding the local alignment between a query and a 
reference to solve for the Levenshtein distance, a sequence alignment metric that allows 3 edit 
operations, namely, insertion, deletion, and substitution [7]. Myers’s algorithm, widely known as Myers 
bit-vector algorithm, follows a dynamic programming approach that takes advantage of bit-parallel 
operations featured in modern processors [27]. It assumes a register size of 32 or 64, therefore restricting 
the length of the query sequence to the word size w [8]. Generally, the approach of the algorithm is to 
solve the matrix in columns rather than computing each cell individually. Each column is encoded using 
m-bits vector representation, namely, Pv for the positive vertical delta value, Mv for the negative vertical 
delta value, Ph for the positive horizontal delta value, Mh for the negative horizontal delta value, Xv for 
the current vertical column value, and Xh for the horizontal column value. This also follows an 
observation lemma that the difference between the adjacent values in each cell in the matrix has a value 
of either -1, 0, or +1. The matrix is completely solved once it has iterated through the whole reference 
sequence. Therefore, the algorithm can achieve a runtime of ϴ(n) assuming that operations will execute 
at ϴ(1), which is promoted to be the fastest sequence alignment algorithm as of now [27]. Hyyrö [7] 
modified Myers’ [8] bit-vector algorithm to compute for the Damerau-Levenshtein distance between a 
query and a reference. The Damerau-Levenshtein distance extends the Levenshtein distance by 
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including transposition between two adjacent characters, therefore, allowing a total of 4 edit operations 
[7]. The addition of transposition edit operation is achieved through the vector variable Xp. The 
algorithm consists of bit operations, namely, | (OR), & (AND), ^ (XOR), << (left shift), + (bitwise 
addition), including arithmetic and comparison operations [26]. 

The algorithm requires a pre-processing of the query sequence. It involves translating each character 
from the query into its corresponding bit-mask that represents its position in the text. The index in the 
vector will be set to 1 when the corresponding character occurs in the query at the specific index, and 0 
otherwise. For example, the bitmask of character ‘A’ for the query “ACTGAC” is B[‘A’] = b’100010 [28]. 

2.3. Advanced Vector Extension 2 Instruction Set Architecture 

The SIMD computing capabilities featured in GPPs enabled vector operations to be executed within 
a single clock cycle [29]. In efforts to expand the Streaming SIMD Extensions (SSE) computing 
technology, Intel released the Advanced Vector Extensions (AVX) and AVX2 featured in the Sandy 
Bridge microarchitecture and Haswell microarchitecture respectively [30]. The AVX and AVX2 extend 
the SSE single-precision floating-point, double-precision floating-point, and integer commands to 
operate on 256-bits YMM vector registers while also increasing the peak double-precision ops per cycle 
[31]. Legacy SSE instructions can still be utilized to execute on the lower 128-bits of the YMM registers, 
this provides access to one of the key features of SSE, text string processing instructions. These 
instructions aim to speed up a number of string primitives whose process would usually entail non-
optimal utilization of the processor and its instruction pipelines. In addition, the Vector Extension 
(VEX) prefix instruction encoding format was introduced, enabling three-operand syntax, in some cases 
four-operand, using non-destructive source operands [32]. Although the AVX2 instruction set 
architecture offers a substantial amount of floating-point and integer instructions, it is not capable of 
performing 256-bit arithmetic addition and bit shift. Thus, the researchers must develop simulations of 
these operations to satisfy the requirements of the bit-vector algorithm. 

2.4. Research Design 

This study provides a discussion on the implementation of a bit-vector algorithm using AVX2 
instruction set architecture as well as its performance evaluation with real-world DNA sequences. Fig. 1 
presents the algorithm used for this study, it was developed and presented by Hyyrö [7] in his own 
paper; Hyyrö did not present any performance evaluation since his study focused on the theories and 
framework of the algorithm. For the purposes of this study, the algorithm was modified (See lines 14 
and 15 on Fig. 1) such that the computation for the Damerau-Levenshtein distance will continue 
regardless of when the k-error threshold has been reached. This not only enables the evaluation of 
similarity between the two sequences but also allows pinpointing highly similar regions. The pre-
processing of the query sequence was also modified to obtain the reverse bitmask of each character. 

The algorithm was implemented on the Visual Studio 2017 and compiled with Microsoft Macro 
Assembler. The application is composed of 2 elements: the C++ program and the assembly program. 
The former handles the input and output (I/O) of the application which is interfaced with the latter 
that is responsible for computing the Damerau-Levenshtein distance between the query and the 
reference sequences. Initially, the application reads the text files that contain the query and reference 
sequences through a memory mapping method that involves allotting a chunk of memory space where 
the lengthy sequences will be placed in by the operating system and stores them in their corresponding 
string variable. The length of the query string will be determined which will be passed along with the 
addresses of the query and reference strings as arguments whenever the assembly program is invoked. 
The assembly program uses a flat memory model and C calling convention. The bit-vector variables of 
the algorithm are loaded into the YMM registers from memory whenever it is used for calculation 
allowing up to 256 query sequence length. The implementation requires the data to be shifted to the 
most significant bit of the register, like zero-extending, to avoid tampering of the higher-order bits 
during calculation which will affect the result. 
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Fig. 1. Hyyrö’s [7] bit-vector algorithm for computing Damerau-Levenshtein distance. 

The flowchart for pre-processing the query sequence for a character is shown in Fig. 2. It utilizes a 
series of vpcmpistrm instructions to obtain the reverse bitmask of a character. The vpcmpistrm instruction 
can process at most 16 characters (resulting to 16 bits of the bitmask) at a time. Thus, requiring a total 
of ⌈m/16⌉ to obtain the whole bitmask of the query sequence. The upper half and the lower half of the 
bitmask must be obtained separately since they are processed in the 128-bit XMM registers. After 
looping through the whole query sequence, the upper and lower bitmasks are merged through the 
vperm2i128 instruction. Since the order of the word elements in the YMM vector register is reversed, 
the vpshufb instruction is utilized to shuffle the position of the word elements and accurately reflect the 
query sequence. It also follows that the data should be on the most significant bit of the register. The 
pre-processing stage is executed for characters ‘A’, 'C', 'G', and 'T'. 

 

Fig. 2. Flowchart for obtaining the bitmask of a character in the query sequence. 

The AVX2 provides a rich set of instructions allowing for a fairly straightforward implementation of 
the bit-vector algorithm. The | (OR) operation corresponds to the vorps instruction, the & (AND) 
operation corresponds to the vandps instruction, the ^ (XOR) operation corresponds to the vxorps 
instruction, and the ~ (NOT) operation can be performed simply by performing an XOR to the argument 
and all ones. However, the SIMD instruction set architecture does not support 256-bit wide addition 
and left shift because the vector elements are treated independently during calculation (i.e. No carry 
between vector elements). Thus, the researchers must simulate these two instructions. 

A combination of store, load, and 32-bit addition were utilized to perform 256-bit wide addition. 
Initially, the two 256-bit arguments are stored in memory and the carry flag is cleared. The arguments 
are treated as 32-bit chunks by loading them into the 32-bit general-purpose registers and added by 
executing adc instruction. This replicates the addition and carry-over between doubleword elements of 
the vector register. The process is repeated 8 times to accomplish 256-bit wide addition. 

Simulating the 256-bit wide left shift involves storing a copy of the argument prior to executing 
vpsllq instruction which will shift the quadword elements of the YMM register to the left by 1 bit. This 
would allow the retrieval of the most significant bit of each quadword element that would have been lost 

1   <Preprocess B[σ] with P>                        ;Preprocess of bit-vectors for sequence P 

2   Bit-vector Pv,Mv,Ph,Mh,Xv,Xh,Eq,Xp               ;Setup vectors with 0m 

3   Score = m 

4   Pv = 1m 

5   Mv = 0m                                                                ;Initialize vertical delta values 

6   for j = 1, 2, ..., n do 

7 Eq = PEq[Σ[T[j]]]                           ;Bit-vectors for reference symbol j 

8      Xv = Eq | Mv                               

9       Xh = (((~Xh) & Xv) << 1) & Xp 

10      Xh = Xh | (((Xv & Pv) + Pv) ^ Pv) | Xv | Mv  ;compute current delta vector 

11      Ph = Mv | ~ (Xh | Pv) 

12      Mh = Xh & Pv                                ;update horizontal delta values 

13      Xp = Xv                                     ;store old pattern bit-vector 

14      if(Ph & 10m-1) then score += 1               

15      else if(Mh & 10m-1) then score -= 1             ;update score 

16      Xv = (Ph << 1) 

17      Pv = (Mh << 1) | ~ (Xh | Xv) 

 18      Mv = Xh & Xv                                ;update vertical delta values 
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after performing the shift instruction. To reproduce the carryover, the most significant bit of every 
quadword element (i.e. bit 63, 127, 191) is checked to see if it is set, if so, the next quadword element 
is incremented, otherwise, no action is taken. 

After each iteration, the assembly program calls a C++ function passing the calculated score at the 
current index as parameter to check whether it is equal with the current lowest score, if so, the specific 
index is added into the array of indexes with the same score, if it is otherwise lower than the current 
lowest score, the previous score and the list of indexes is overwritten, otherwise, no action is taken. The 
application outputs the results of the computation by writing the summary in the console and text file. 
The summary includes the query string, length of the query, length of the reference, lowest score, and 
possible substrings where the lowest score may be located.  

Additionally, the implementation follows some optimization guidelines from the Intel® 64 and IA-
32 Architectures Optimization Reference Manual [33] that includes: keeping code and data on separate 
pages, aligning data on natural operand size address boundaries, using test instruction instead of cmp 
whenever possible, using add or sub instructions instead of inc or dec, using logical instructions to zero a 
register, unrolling loops, arranging code to be consistent with the static branch prediction algorithm or 
to reduce branches, utilizing single-precision instructions instead of double-precision, taking advantage 
of zero-latency mov, organizing code to maximize micro-architectural resources, and enabling flush-to-
zero and denormals-are-zero mode. 

To evaluate the performance of the study’s implementation,  the DNA sequences of  Homo sapiens 
(human), Mus Musculus (mouse), Solanum Pennellii (eudicots), Brachypodium Distachyon strain Bd21 
(stiff brome), Ornithorhynchus Anatinus (platypus), Cajanus Cajan (pigeon pea), Pseudomonas Syringae (g-
proteobacteria), Chthonomonas Calidirosea (bacteria), Prochlorococcus Marinus str. MIT 9211 
(cyanobacteria), and Mycoplasma Conjuctivae (mycoplasmas) were selected for experimentation. The 
reference sequence dataset is composed of chromosome 1 sequences from the chosen species which can 
be obtained from the GenBank sequence database of NCBI [9]. For this study, the researchers have 
omitted the instances of the wildcard character ‘N’ for all sequences. Table 1 shows the reference 
sequence datasets and their corresponding length, excluding character ‘N’. On the other hand, the query 
sequence dataset is composed of generated DNA sequences that have varying lengths of 32, 64, 92, 128, 
160, 192, 224, and 256. 

Table 1.  Summary of dataset used. 

Species 
Reference Genome 

Assembly Name Length (No. of Characters) 

Human GRCh38.p12 230481014 

Mouse GRCm38.p4 C57BL/6J 195471971 

Eudicots SPENNV200 109333515 

Stiff Brome Bd21 75071545 

Platypus Ornithorhynchus_anatinus-5.0.1 47594283 

Pigeon Pea C.cajan_V1.0 17676265 

G-proteobacteria DC3000 6397126 

Bacteria T49 3437861 

Cyanobacteria MIT 9211 1688963 

Mycoplasmas HRC/581T 846214 

3. Results and Discussion 

The experiment aims to investigate the effect of diverse sequence lengths on I/O load time, 
computation time, process memory, and power consumption of the implementation. The procedure was 
performed on the Dell XPS 15 laptop equipped with Intel Core ™ i7 –6700HQ 2.6Ghz 64-bit processor 
and 8GB of RAM. Each test case is executed 10 times to average out the result. 

To validate the correctness of the implementations, the application was tested to return the score of 
aligning a query sequence against 3 variations of the same sequence: no mismatch, with 5 mismatches, 
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and with the random number of mismatches. The score was expected to correspond to the number of 
mismatches the researchers inserted. Moreover, the application was cross-validated with the Python 
implementation of the algorithm using Mycoplasmas’ sequence as the reference against the query 
sequence dataset. The results are consistent with the expected scores, thus, verifying the correctness of 
the implementation. 

For the purpose of proving that the implementation was optimized to enhance computation time, 
the performance of the optimized implementation was compared against the barebone implementation 
(i.e. no optimizations done). Fig. 3 to Fig. 6 show the comparison of the average computation times 
between the two versions. Based on the data, the improvement is apparent as the optimized version 
outperformed the barebone version by achieving a speedup of up to 1.36 times. 

 

Fig. 3. Comparison of average computation time in seconds (S) using query sequence with length of 64. 

 

Fig. 4. Comparison of average computation time in seconds (S) using query sequence with length of 128. 

 
Fig. 5. Comparison of average computation time in seconds (S) using query sequence with length of 192. 
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Fig. 6. Comparison of average computation time in seconds (S) using query sequence with length of 256. 

The average I/O load time is illustrated in Fig. 7. The I/O load time measures how long it takes to 
read the query and reference sequences text files and store it in their corresponding memory space. It is 
evident that the length of the reference sequence has a linear effect to the I/O load time, while the 
length of the query sequence has little to no impact; thus, its time complexity is ϴ(n). 

 

Fig. 7. Average I/O load time in milliseconds (mS). 

The computation time consists of a pre-processing stage, actual computation for Damerau-
Levenshtein distance, and storing of indexes where the most similar substrings may be located. Fig. 8 
shows the performance of the application in terms of computation time. It can be derived that it is 
heavily dependent on the size of the reference sequence. However, the data also shows that the length 
of the query sequence affects the computation time which rejects the expected time complexity of ϴ(n). 
Despite limiting the size of the query (m < 256) and performing the calculations on the 256-bit YMM 
registers, the influence of the length of the query to the computation time is caused by the accumulation 
of some frequently repeated process that is dependent on m. For example, the simulated 256-bit wide 
arithmetic addition is completed faster for shorter query sequences because the carry out is cascaded less. 
Further investigation (Shown in Fig. 9 and Fig. 10) reveals that the machine word size is 64 bits since 
most of the AVX/AVX2 instructions used in the implementation operates by quadwords (64 bits). 
Therefore, since the computation time displays a linear relationship with the reference sequence size and 
is also affected by the length of the query sequence and machine word size, it runs at ϴ(n*⌈m/64⌉). 
Moreover, Fredriksson [24] had a similar finding in his study that supports this hypothesis wherein the 
researcher attributed it to be caused by hardware limitation such that the SIMD instructions still execute 
based on the native machine word size (denoted as w); therefore the bit-operations do not run at the 
expected ϴ(1), but rather ϴ(⌈m/w⌉). 
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Fig. 8. Average computation time in seconds (S). 

 

Fig. 9. Average computation time in seconds (S) using query sequences with lengths of 32, 64, 96, 128. 

 

Fig. 10. Average computation time in seconds (S) using query sequences with lengths of 160, 192, 224, 256. 

Fig. 11 shows the memory consumption of the application in megabytes (MB). A linear relationship 
between the memory consumption and reference sequence length can be deduced from the illustration. 
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The memory consumption was consistent for each reference data-set regardless of the length of the 
query sequence. It consumes approximately the size of the reference sequence in bytes plus 40 MB. 
Therefore, it can be argued that it has achieved ϴ(n) memory consumption. Finally, the power 
consumption was investigated, and it reveals that the program consumes approximately 20 – 25W 
regardless of sequence length. 

 

Fig. 11. Memory Consumption in megabytes (MB). 

4. Conclusion 

This study presents an implementation of Hyyrö’s bit-vector algorithm for pairwise DNA sequence 
alignment using AVX2 instruction set architecture to run on modern processors. To our knowledge, 
this is an initial attempt of developing the algorithm to take advantage of SIMD computing capabilities 
of AVX2 on recent processors which advances the idea of the possibility of implementing other compute-
intensive applications on GPP. Based on the results of the experimentation, the AVX2 implementation 
has achieved an I/O load time of ϴ(n) since it is mostly impacted by the length of the reference sequence. 
It can also be argued that the computation time complexity of the implementation is longer than the 
ideal ϴ(n) time complexity due to the simulation of the 256-bit addition and left shift which entails the 
carry out to be cascaded to the higher-order elements, and architectural limitations that causes 
instruction to operate based on its native machine word size (64-bits) and not on the actual SIMD vector 
size; thus, each operation runs at ϴ(⌈m/64⌉) and the implementation computes at ϴ(n*⌈m/64⌉), similar 
to Fredriksson’s [24] implementation and on a par with Faro and Külekci’s [25] implementation that 
reached a computation time of ϴ(nm). Furthermore, the implementation has a memory consumption of 
ϴ(n), wherein it requires approximately twice the size of the reference sequence in bytes plus 40 MB. 
This study’s implementation displayed a linear growth of memory consumption. In contrast, Faro and 
Külekci’s [25] implementation showed exponential growth. Performing pairwise sequence alignment 
using Hyyrö’s algorithm is just the first step. Future research works may want to attempt extending or 
removing the limitations on the query sequence length or to explore multiple sequence alignment and 
multi-core or multi-threaded programming. 
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