
International Journal of Advances in Intelligent Informatics ISSN 2442-6571

Vol. 5, No. 3, November 2019, pp. 230-242 230

 http://dx.doi.org/10.26555/ijain.v5i3.362 http://ijain.org ijain@uad.ac.id

Implementation of hyyrö’s bit-vector algorithm using
advanced vector extensions 2

Kyle Matthew Chan Chua a,1,*, Janz Aeinstein Fauni Villamayor a,2, Lorenzo Campos Bautista a,3,

Roger Luis Uy a,4

a Computer Technology Department, College of Computer Studies, De La Salle University, Manila, Philippines
1 chua.kyle.matthew.c@gmail.com; 2 janzvillamayor@gmail.com; 3 lorauxe99@gmail.com; 4 roger.uy@dlsu.edu.ph

* corresponding author

1. Introduction

The Deoxyribonucleic Acid (DNA) is a complex molecule that contains hereditary and biological
information which is found in every organism [1]. A DNA sequence can be up to 3 billion in length and
is composed of nucleotide bases, namely, Adenine (A), Cytosine (C), Guanine (G), and Thymine (T).
Each nitrogenous base holds genetic information and its arrangement in a genome dictates the unique
genetic characteristics possessed by a living being. However, researchers discovered that the DNA
sequences of all humans are nearly identical; thus, locating and analyzing the similarities or differences
would yield more profound knowledge on the function or relationship between the sequences [2][3].
Understanding the sequence’s structure and function has made significant impacts on scientific,
biological, and medical advancements [4]. Bioinformatics is the science that applying computer science
and mathematics to create computational techniques for the collection and analysis of biological data
[3]. One of the major researches in the field is performing pattern matching between DNA sequences
which leads to the discovery and understanding of biological relationships. It can be used in higher-level
processes, such as phylogenetic trees, genetic structure prediction, and disease diagnosis [5][6].

Given a reference sequence length n and a query sequence with length m, and the goal of sequence
alignment is to compute the edit distance (score) between the sequences. Then, most of the time
determines within the pre-defined k-error thresholds to pinpoint regions of similarities that allow the
analysis and assessment of relationship between species and organisms [5]–[8]. The reference is the

ARTICL E INFO

ABSTRACT

Article history

Received May 24, 2019

Revised July 8, 2019

Accepted October 11, 2019

Available online October 29, 2019

 The Advanced Vector Extensions 2 (AVX2) instruction set architecture was
introduced by Intel’s Haswell microarchitecture that features improved
processing power, wider vector registers, and a rich instruction set. This
study presents an implementation of the Hyyrö’s bit-vector algorithm for
pairwise Deoxyribonucleic Acid (DNA) sequence alignment that takes
advantage of Single-Instruction-Multiple-Data (SIMD) computing
capabilities of AVX2 on modern processors. It investigated the effects of
the length of the query and reference sequences to the I/O load time,
computation time, and memory consumption. The result reveals that the
experiment has achieved an I/O load time of ϴ(n), computation time of
ϴ(n*⌈m/64⌉), and memory consumption of ϴ(n). The implementation
computed more extended time complexity than the expected ϴ(n) due to
instructional and architectural limitations. Nonetheless, it was par with
other experiments, in terms of computation time complexity and memory
consumption.

This is an open access article under the CC–BY-SA license.

Keywords

DNA sequence alignment

Biometrics

Bit-vector algorithm

SIMD computing capabilities

Modern processors

http://dx.doi.org/10.26555/ijain.v5i3.362
http://ijain.org/index.php/IJAIN/index
mailto:ijain@uad.ac.id?subject=[IJAIN]
mailto:chua.kyle.matthew.c@gmail.com
mailto:janzvillamayor@gmail.com
mailto:lorauxe99@gmail.com
mailto:roger.uy@dlsu.edu.ph
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.26555/ijain.v5i3.362&domain=pdf

231 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 5, No. 3, November 2019, pp. 230-242

 Chua et al. (Implementation of hyyrö’s bit-vector algorithm using advanced vector extensions 2)

source sequence (e.g. a human genome), which can be obtained from public online GenBank sequence
database, usually from NCBI [9]. Whereas, the query sequence is a short read that the scientists are
interested in locating or investigating (e.g. genomic mutation or diseases) from the reference string. Edit
distance could be defined as the number of required edit operations to make both sequences equal.
Moreover, it can concurrently process depending on the number of sequences. Sequence alignment
algorithms can be classified in either pairwise or multiple sequence alignment; the former aligns exactly
2 sequences (one query, one reference), while the latter aligns 2 or more sequences simultaneously [6].
Researchers argue that multiple sequence alignment is more significant for scientific and research
purposes. However, it is essential to note that multiple sequence alignment is merely an extension of
pairwise sequence alignment. Thus, multiple sequence alignment benefits from enhancing pairwise
sequence alignment [5]. Sequence alignment algorithms can be divided into two types; Global or Local.
The global method aligns the sequences from end-to-end, and it is useful when identifying the total
similarity of sequences. While, the local method aligns fragments of the sequences, and it is useful when
identifying homologous regions [10].

DNA sequence alignment is a computational-heavy and time-demanding process because of its time
complexity usually dependent on both m and n [8]. Due to the advancements on DNA Next Generation
Sequencing (NGS) technologies, scientists were able to generate DNA sequences at a much higher rate
and lower cost, and DNA sequence alignment could not keep up with the rapid growth of sequence
database; therefore, There are challenged to formulate efficient bioinformatics solutions which can be
crucial in numerous scenarios, such as DNA forensics, early diagnosis of susceptibility to genetic diseases,
and prevention of bacteria or virus evolution [5]. This influenced the implementation of DNA sequence
alignment solutions on High-Performance Computing (HPC) technologies that can perform intensive
computational processes, including Field Programmable Gate Arrays (FPGA); Graphical Processing
Units (GPU); and Cell Broadband Engines (Cell BE) [11]. However, as of today, few research works has
been conducted that focuses on implementing sequence alignment using Intel’s iinstruction-set
architecture to run on General Purpose Processors (GPP).

In 2013, Intel introduced the Haswell microarchitecture, which featured Single-Instruction-
Multiple-Data (SIMD) capabilities as it supported Advanced Vector Extensions (256-bit operators), an
extension from Streaming SIMD Extensions (128-bit operators) [12]. These instructions exploit the
data stream’s parallelism allowing it to process multiple data simultaneously with a single instruction
improving the throughput of floating-point operations [13][14]. The addition of SIMD instructions to
Intel processors offers a rich instruction set, making it possible to implement a DNA sequence alignment
algorithm to run on GPP.

In this study, the researchers implemented an existing bit-vector algorithm that performs DNA
sequence alignment on a query sequence and a reference sequence. This study took advantage of modern
processors’ bit-parallel operation capabilities utilizing Intel’s SIMD technologies, specifically, Advanced
Vector Extension 2 (AVX2), supported by at least 4th generation Intel processors (code-named
“Haswell”). The correctness of the program was verified through multiple test cases. Furthermore, this
paper also highlights the program’s performance with various DNA sequences by measuring execution
time and memory consumption. The study mainly focused on implementing Hyyrö’s bit-vector
algorithm [7] to utilize AVX2 instruction set architecture for pairwise sequence alignment. The system
would be capable of handling up to 256 query sequence length since the query sequence and the bit-
vector variables were processed in the 256-bit vector registers. Real-world DNA sequences obtained from
the National Center for Biological Information (NCBI) online GenBank sequence database [9] utilized
as a data set for experimentation.

2. Method

2.1. Sequence Alignment Algorithms

Several sequence alignment algorithms have been developed based on the dynamic programming
approach; most notable are the Needleman-Wunsch and Smith-Waterman algorithm [11]. Both

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 232
 Vol. 5, No. 3, November 2019, pp. 230-242

 Chua et al. (Implementation of hyyrö’s bit-vector algorithm using advanced vector extensions 2)

algorithms are useful primarily for pairwise and global alignment. The advantage of using the
Needleman-Wunsch and Smith-Waterman algorithm is the capability to locate the optimal alignment
between the sequences. However, these algorithms demand more time to complete and run at ϴ(nm)
[15][16]. Shehab et al. [15] developed the FDASA (Fast Dynamic Algorithm for Sequence Alignment)
which executes the Needleman-Wunsch and Smith-Waterman algorithm with faster time complexity
of either ϴ(3m+1) when two sequences have equal length (ϴ(3m+2)) or different lengths. Tarhio and
Ukkonen [17] unveiled that the Boyer-Moore algorithm-generated optimal runtime speed for longer
sequences, though increasing the k mismatch threshold will slow down the computation compared to
other dynamic programming algorithms. Having said that, Gou [18] highlighted the difference between
the Naïve, Knuth-Morris-Pratt, Boyer-Moore, and Rabin-Karp algorithm in terms of alignment speed
for various sequence lengths. The results supported Tarhio and Ukkonen’s [17] argument that the
Boyer-Moore algorithm works best for longer sequences. On the other hand, it was revealed the Rabin-
Karp algorithm is suitable for shorter sequences. Other researchers have delved into finite state machines
to develop sequence alignment algorithms. For instance, the Aho-Corasick algorithm is one of the
most commonly used algorithms that use an automata approach for exact multiple string matching.
Subsequently, the Commentz-Walter algorithm was introduced as a better alternative for the Aho-
Corasick algorithm since it is a combination of both Aho-Corasick and Boyer-Moore algorithm
[19]. In a comparative study by Vidanagamachchi et al. [19], the results invalidated prior belief
because the Aho-Corasick algorithm attained better runtime than the Commentz-Walter algorithm
because the latter requires more pre-processing time to construct the finite state machine. Zhu et
al. [20] formulated the Bayes block aligner algorithm for local alignment that incorporates the
statistics concept of Bayes inference, which involves probability and distribution, to mitigate the
need of defining parameters and variables, such as gap penalties and scoring matrices [21]. The study
shows that the Bayes block aligner algorithm outperformed the widely known SSEARCH algorithm
on VAST in terms of the percentage of correctly identifying structural neighbors while achieving a
time complexity of ϴ(n2) [20].

Aside from the algorithm, the edit distance metric also plays an important role in sequence alignment
performance. Pandiselvam et al. [16] conveyed that the simplest edit distance to compute is the
Hamming distance because it merely counts the number of differences at every position between
sequences with equal length. The Hamming distance is mainly used for exact sequence alignment since
it requires the sequences to have the same length and it only performs substitution operation. Another
study from Levenshtein [22] explored the use of binary information in which mismatches can be
corrected using deletions, insertions, and substitutions. The scoring scheme is called the Levenshtein
distance; this metric is used for approximate sequence alignment because it is not constrained by the
length of the sequences and offers more edit operations. It follows a dynamic programming approach
that counts the minimum cost that is required for two sequences be equal. Research contrasted the two
edit distance metrics and the investigation has proven that although the Hamming distance generated
more accurate alignment results, the Levenshtein distance proved to be faster by achieving ϴ(n+m) time
complexity compared to the former’s ϴ(nm) time complexity [16].

A number of researchers have implemented sequence alignment algorithms by utilizing the
computing capabilities of the SIMD unit embedded in GPPs since it is much easier to program, more
portable, and widely available [11]. Nataliani and Wellem [23] implemented Myer’s bit-vector algorithm
using MATLAB to investigate the similarity of Rhodopsin protein sequence of class Aves. To conduct
the experimentation, the data set consists of the sequences of 25 species that have Rhodopsin protein
from class Aves that were obtained from the Universal Protein Resource (UniProt) Consortium website
and DNA Data Bank of Japan (DDBJ) website. The study mainly features a proof-of-concept
implementation of the bit-vector algorithm using a high-level tool. However, it falls short of evaluating
the speed and memory performance of the application.

Fredriksson [24] featured an alternative method to perform string matching using Myers' bit-parallel
algorithm. The researcher proposed a new arrangement for comparing short query sequences (m < w,
where w is the computer word size) such that the computations are performed in a row-wise approach

233 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 5, No. 3, November 2019, pp. 230-242

 Chua et al. (Implementation of hyyrö’s bit-vector algorithm using advanced vector extensions 2)

instead of a column-wise manner to minimize the wasted bits of the computer word. The algorithm was
implemented on an Intel Pentium 4 processor, coded using Intel SSE2 instruction set architecture
through C/C++ intrinsics. For experimentation, the researchers used a randomly generated DNA
sequence of size 64Mb as reference sequence and short query sequences with varying lengths (i.e. 8, 16,
32, 64, 128) to investigate the effects of varying w. The results showed that the execution time of the
whole sequence alignment process has a linear relationship with m, and subsequently, w. The researchers
argued that their implementation is very fast, however, it is dependent on the architecture.

Faro and Külekci [25] promoted an exact string-matching method, called Exact Packed String-
Matching algorithm (EPSM), which aims to speed up the process for short query sequences. The idea
is to exploit the bit-parallelism of the word RAM model; thus, the computations are performed on
words of length w (assuming w is 32). The researchers utilized Intel SSE's specialized packed string
matching intrinsics that includes: wscmp, wsmatch, wsblend, and wscrc. To evaluate the performance of
the proposed algorithm, the reference sequences used were a genome sequence, a protein sequence, and
an English natural language text, all of which are 4Mb in size; moreover, sets of 1000 query sequences
were extracted from each corresponding reference sequence, where m would range from 2 to 32. The
results revealed that their implementation has achieved a worst case of O(nm) time complexity and O(2k)
memory consumption. Comparing it with other algorithms, the researchers argued that the EPSM
algorithm is the fastest when m ≤ 32.

Memeti and Pllana [6] presented a large-scale DNA analysis algorithm designed to be implemented
on the Intel Xeon Phi 7120P coprocessor (code-named “Knights Corner”). The proposed algorithm was
based on finite automata, it exploits thread-level parallelism by dividing and distributing the input DNA
sequence across threads; moreover, it also takes advantage of bit-parallelism featured in AVX-512
instruction set architecture. The DNA sequences of mouse, cat, dog, chicken, human, and turkey
obtained from the GenBank sequence database of NCBI composed the reference sequence data set, while
regex-dna benchmark with a fixed number of errors composed the query sequence data set for evaluation.
Each test case was executed 20 times to prove the consistency of its performance. The results reported a
maximum speedup of 10x compared to a sequential implementation on the Intel Xeon ES-2695v2
processor. The researchers were interested to investigate the optimal number of threads for multiple
sequence alignment. In contrast, since our research work focuses on pairwise sequence alignment, this
approach is not applicable to our study.

2.2. Sequence Alignment through Bit-vector Algorithm

The prevailing method for aligning two sequences is via the dynamic programming method. Dynamic
programming incorporates a recursive approach which usually requires an (m+1)(n+1) two-dimensional
scoring matrix. However, the run time of the algorithms using this approach is highly dependent on
both m and n, and sometimes even k-error threshold, and consumes ϴ(mn) space [26].

Myers [8] proposed an alternative solution in finding the local alignment between a query and a
reference to solve for the Levenshtein distance, a sequence alignment metric that allows 3 edit
operations, namely, insertion, deletion, and substitution [7]. Myers’s algorithm, widely known as Myers
bit-vector algorithm, follows a dynamic programming approach that takes advantage of bit-parallel
operations featured in modern processors [27]. It assumes a register size of 32 or 64, therefore restricting
the length of the query sequence to the word size w [8]. Generally, the approach of the algorithm is to
solve the matrix in columns rather than computing each cell individually. Each column is encoded using
m-bits vector representation, namely, Pv for the positive vertical delta value, Mv for the negative vertical
delta value, Ph for the positive horizontal delta value, Mh for the negative horizontal delta value, Xv for
the current vertical column value, and Xh for the horizontal column value. This also follows an
observation lemma that the difference between the adjacent values in each cell in the matrix has a value
of either -1, 0, or +1. The matrix is completely solved once it has iterated through the whole reference
sequence. Therefore, the algorithm can achieve a runtime of ϴ(n) assuming that operations will execute
at ϴ(1), which is promoted to be the fastest sequence alignment algorithm as of now [27]. Hyyrö [7]
modified Myers’ [8] bit-vector algorithm to compute for the Damerau-Levenshtein distance between a
query and a reference. The Damerau-Levenshtein distance extends the Levenshtein distance by

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 234
 Vol. 5, No. 3, November 2019, pp. 230-242

 Chua et al. (Implementation of hyyrö’s bit-vector algorithm using advanced vector extensions 2)

including transposition between two adjacent characters, therefore, allowing a total of 4 edit operations
[7]. The addition of transposition edit operation is achieved through the vector variable Xp. The
algorithm consists of bit operations, namely, | (OR), & (AND), ^ (XOR), << (left shift), + (bitwise
addition), including arithmetic and comparison operations [26].

The algorithm requires a pre-processing of the query sequence. It involves translating each character
from the query into its corresponding bit-mask that represents its position in the text. The index in the
vector will be set to 1 when the corresponding character occurs in the query at the specific index, and 0
otherwise. For example, the bitmask of character ‘A’ for the query “ACTGAC” is B[‘A’] = b’100010 [28].

2.3. Advanced Vector Extension 2 Instruction Set Architecture

The SIMD computing capabilities featured in GPPs enabled vector operations to be executed within
a single clock cycle [29]. In efforts to expand the Streaming SIMD Extensions (SSE) computing
technology, Intel released the Advanced Vector Extensions (AVX) and AVX2 featured in the Sandy
Bridge microarchitecture and Haswell microarchitecture respectively [30]. The AVX and AVX2 extend
the SSE single-precision floating-point, double-precision floating-point, and integer commands to
operate on 256-bits YMM vector registers while also increasing the peak double-precision ops per cycle
[31]. Legacy SSE instructions can still be utilized to execute on the lower 128-bits of the YMM registers,
this provides access to one of the key features of SSE, text string processing instructions. These
instructions aim to speed up a number of string primitives whose process would usually entail non-
optimal utilization of the processor and its instruction pipelines. In addition, the Vector Extension
(VEX) prefix instruction encoding format was introduced, enabling three-operand syntax, in some cases
four-operand, using non-destructive source operands [32]. Although the AVX2 instruction set
architecture offers a substantial amount of floating-point and integer instructions, it is not capable of
performing 256-bit arithmetic addition and bit shift. Thus, the researchers must develop simulations of
these operations to satisfy the requirements of the bit-vector algorithm.

2.4. Research Design

This study provides a discussion on the implementation of a bit-vector algorithm using AVX2
instruction set architecture as well as its performance evaluation with real-world DNA sequences. Fig. 1
presents the algorithm used for this study, it was developed and presented by Hyyrö [7] in his own
paper; Hyyrö did not present any performance evaluation since his study focused on the theories and
framework of the algorithm. For the purposes of this study, the algorithm was modified (See lines 14
and 15 on Fig. 1) such that the computation for the Damerau-Levenshtein distance will continue
regardless of when the k-error threshold has been reached. This not only enables the evaluation of
similarity between the two sequences but also allows pinpointing highly similar regions. The pre-
processing of the query sequence was also modified to obtain the reverse bitmask of each character.

The algorithm was implemented on the Visual Studio 2017 and compiled with Microsoft Macro
Assembler. The application is composed of 2 elements: the C++ program and the assembly program.
The former handles the input and output (I/O) of the application which is interfaced with the latter
that is responsible for computing the Damerau-Levenshtein distance between the query and the
reference sequences. Initially, the application reads the text files that contain the query and reference
sequences through a memory mapping method that involves allotting a chunk of memory space where
the lengthy sequences will be placed in by the operating system and stores them in their corresponding
string variable. The length of the query string will be determined which will be passed along with the
addresses of the query and reference strings as arguments whenever the assembly program is invoked.
The assembly program uses a flat memory model and C calling convention. The bit-vector variables of
the algorithm are loaded into the YMM registers from memory whenever it is used for calculation
allowing up to 256 query sequence length. The implementation requires the data to be shifted to the
most significant bit of the register, like zero-extending, to avoid tampering of the higher-order bits
during calculation which will affect the result.

235 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 5, No. 3, November 2019, pp. 230-242

 Chua et al. (Implementation of hyyrö’s bit-vector algorithm using advanced vector extensions 2)

Fig. 1. Hyyrö’s [7] bit-vector algorithm for computing Damerau-Levenshtein distance.

The flowchart for pre-processing the query sequence for a character is shown in Fig. 2. It utilizes a
series of vpcmpistrm instructions to obtain the reverse bitmask of a character. The vpcmpistrm instruction
can process at most 16 characters (resulting to 16 bits of the bitmask) at a time. Thus, requiring a total
of ⌈m/16⌉ to obtain the whole bitmask of the query sequence. The upper half and the lower half of the
bitmask must be obtained separately since they are processed in the 128-bit XMM registers. After
looping through the whole query sequence, the upper and lower bitmasks are merged through the
vperm2i128 instruction. Since the order of the word elements in the YMM vector register is reversed,
the vpshufb instruction is utilized to shuffle the position of the word elements and accurately reflect the
query sequence. It also follows that the data should be on the most significant bit of the register. The
pre-processing stage is executed for characters ‘A’, 'C', 'G', and 'T'.

Fig. 2. Flowchart for obtaining the bitmask of a character in the query sequence.

The AVX2 provides a rich set of instructions allowing for a fairly straightforward implementation of
the bit-vector algorithm. The | (OR) operation corresponds to the vorps instruction, the & (AND)
operation corresponds to the vandps instruction, the ^ (XOR) operation corresponds to the vxorps
instruction, and the ~ (NOT) operation can be performed simply by performing an XOR to the argument
and all ones. However, the SIMD instruction set architecture does not support 256-bit wide addition
and left shift because the vector elements are treated independently during calculation (i.e. No carry
between vector elements). Thus, the researchers must simulate these two instructions.

A combination of store, load, and 32-bit addition were utilized to perform 256-bit wide addition.
Initially, the two 256-bit arguments are stored in memory and the carry flag is cleared. The arguments
are treated as 32-bit chunks by loading them into the 32-bit general-purpose registers and added by
executing adc instruction. This replicates the addition and carry-over between doubleword elements of
the vector register. The process is repeated 8 times to accomplish 256-bit wide addition.

Simulating the 256-bit wide left shift involves storing a copy of the argument prior to executing
vpsllq instruction which will shift the quadword elements of the YMM register to the left by 1 bit. This
would allow the retrieval of the most significant bit of each quadword element that would have been lost

1 <Preprocess B[σ] with P> ;Preprocess of bit-vectors for sequence P

2 Bit-vector Pv,Mv,Ph,Mh,Xv,Xh,Eq,Xp ;Setup vectors with 0m

3 Score = m

4 Pv = 1m

5 Mv = 0m ;Initialize vertical delta values

6 for j = 1, 2, ..., n do

7 Eq = PEq[Σ[T[j]]] ;Bit-vectors for reference symbol j

8 Xv = Eq | Mv

9 Xh = (((~Xh) & Xv) << 1) & Xp

10 Xh = Xh | (((Xv & Pv) + Pv) ^ Pv) | Xv | Mv ;compute current delta vector

11 Ph = Mv | ~ (Xh | Pv)

12 Mh = Xh & Pv ;update horizontal delta values

13 Xp = Xv ;store old pattern bit-vector

14 if(Ph & 10m-1) then score += 1

15 else if(Mh & 10m-1) then score -= 1 ;update score

16 Xv = (Ph << 1)

17 Pv = (Mh << 1) | ~ (Xh | Xv)

 18 Mv = Xh & Xv ;update vertical delta values

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 236
 Vol. 5, No. 3, November 2019, pp. 230-242

 Chua et al. (Implementation of hyyrö’s bit-vector algorithm using advanced vector extensions 2)

after performing the shift instruction. To reproduce the carryover, the most significant bit of every
quadword element (i.e. bit 63, 127, 191) is checked to see if it is set, if so, the next quadword element
is incremented, otherwise, no action is taken.

After each iteration, the assembly program calls a C++ function passing the calculated score at the
current index as parameter to check whether it is equal with the current lowest score, if so, the specific
index is added into the array of indexes with the same score, if it is otherwise lower than the current
lowest score, the previous score and the list of indexes is overwritten, otherwise, no action is taken. The
application outputs the results of the computation by writing the summary in the console and text file.
The summary includes the query string, length of the query, length of the reference, lowest score, and
possible substrings where the lowest score may be located.

Additionally, the implementation follows some optimization guidelines from the Intel® 64 and IA-
32 Architectures Optimization Reference Manual [33] that includes: keeping code and data on separate
pages, aligning data on natural operand size address boundaries, using test instruction instead of cmp
whenever possible, using add or sub instructions instead of inc or dec, using logical instructions to zero a
register, unrolling loops, arranging code to be consistent with the static branch prediction algorithm or
to reduce branches, utilizing single-precision instructions instead of double-precision, taking advantage
of zero-latency mov, organizing code to maximize micro-architectural resources, and enabling flush-to-
zero and denormals-are-zero mode.

To evaluate the performance of the study’s implementation, the DNA sequences of Homo sapiens
(human), Mus Musculus (mouse), Solanum Pennellii (eudicots), Brachypodium Distachyon strain Bd21
(stiff brome), Ornithorhynchus Anatinus (platypus), Cajanus Cajan (pigeon pea), Pseudomonas Syringae (g-
proteobacteria), Chthonomonas Calidirosea (bacteria), Prochlorococcus Marinus str. MIT 9211
(cyanobacteria), and Mycoplasma Conjuctivae (mycoplasmas) were selected for experimentation. The
reference sequence dataset is composed of chromosome 1 sequences from the chosen species which can
be obtained from the GenBank sequence database of NCBI [9]. For this study, the researchers have
omitted the instances of the wildcard character ‘N’ for all sequences. Table 1 shows the reference
sequence datasets and their corresponding length, excluding character ‘N’. On the other hand, the query
sequence dataset is composed of generated DNA sequences that have varying lengths of 32, 64, 92, 128,
160, 192, 224, and 256.

Table 1. Summary of dataset used.

Species
Reference Genome

Assembly Name Length (No. of Characters)

Human GRCh38.p12 230481014

Mouse GRCm38.p4 C57BL/6J 195471971

Eudicots SPENNV200 109333515

Stiff Brome Bd21 75071545

Platypus Ornithorhynchus_anatinus-5.0.1 47594283

Pigeon Pea C.cajan_V1.0 17676265

G-proteobacteria DC3000 6397126

Bacteria T49 3437861

Cyanobacteria MIT 9211 1688963

Mycoplasmas HRC/581T 846214

3. Results and Discussion

The experiment aims to investigate the effect of diverse sequence lengths on I/O load time,
computation time, process memory, and power consumption of the implementation. The procedure was
performed on the Dell XPS 15 laptop equipped with Intel Core ™ i7 –6700HQ 2.6Ghz 64-bit processor
and 8GB of RAM. Each test case is executed 10 times to average out the result.

To validate the correctness of the implementations, the application was tested to return the score of
aligning a query sequence against 3 variations of the same sequence: no mismatch, with 5 mismatches,

237 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 5, No. 3, November 2019, pp. 230-242

 Chua et al. (Implementation of hyyrö’s bit-vector algorithm using advanced vector extensions 2)

and with the random number of mismatches. The score was expected to correspond to the number of
mismatches the researchers inserted. Moreover, the application was cross-validated with the Python
implementation of the algorithm using Mycoplasmas’ sequence as the reference against the query
sequence dataset. The results are consistent with the expected scores, thus, verifying the correctness of
the implementation.

For the purpose of proving that the implementation was optimized to enhance computation time,
the performance of the optimized implementation was compared against the barebone implementation
(i.e. no optimizations done). Fig. 3 to Fig. 6 show the comparison of the average computation times
between the two versions. Based on the data, the improvement is apparent as the optimized version
outperformed the barebone version by achieving a speedup of up to 1.36 times.

Fig. 3. Comparison of average computation time in seconds (S) using query sequence with length of 64.

Fig. 4. Comparison of average computation time in seconds (S) using query sequence with length of 128.

Fig. 5. Comparison of average computation time in seconds (S) using query sequence with length of 192.

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 238
 Vol. 5, No. 3, November 2019, pp. 230-242

 Chua et al. (Implementation of hyyrö’s bit-vector algorithm using advanced vector extensions 2)

Fig. 6. Comparison of average computation time in seconds (S) using query sequence with length of 256.

The average I/O load time is illustrated in Fig. 7. The I/O load time measures how long it takes to
read the query and reference sequences text files and store it in their corresponding memory space. It is
evident that the length of the reference sequence has a linear effect to the I/O load time, while the
length of the query sequence has little to no impact; thus, its time complexity is ϴ(n).

Fig. 7. Average I/O load time in milliseconds (mS).

The computation time consists of a pre-processing stage, actual computation for Damerau-
Levenshtein distance, and storing of indexes where the most similar substrings may be located. Fig. 8
shows the performance of the application in terms of computation time. It can be derived that it is
heavily dependent on the size of the reference sequence. However, the data also shows that the length
of the query sequence affects the computation time which rejects the expected time complexity of ϴ(n).
Despite limiting the size of the query (m < 256) and performing the calculations on the 256-bit YMM
registers, the influence of the length of the query to the computation time is caused by the accumulation
of some frequently repeated process that is dependent on m. For example, the simulated 256-bit wide
arithmetic addition is completed faster for shorter query sequences because the carry out is cascaded less.
Further investigation (Shown in Fig. 9 and Fig. 10) reveals that the machine word size is 64 bits since
most of the AVX/AVX2 instructions used in the implementation operates by quadwords (64 bits).
Therefore, since the computation time displays a linear relationship with the reference sequence size and
is also affected by the length of the query sequence and machine word size, it runs at ϴ(n*⌈m/64⌉).
Moreover, Fredriksson [24] had a similar finding in his study that supports this hypothesis wherein the
researcher attributed it to be caused by hardware limitation such that the SIMD instructions still execute
based on the native machine word size (denoted as w); therefore the bit-operations do not run at the
expected ϴ(1), but rather ϴ(⌈m/w⌉).

239 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 5, No. 3, November 2019, pp. 230-242

 Chua et al. (Implementation of hyyrö’s bit-vector algorithm using advanced vector extensions 2)

Fig. 8. Average computation time in seconds (S).

Fig. 9. Average computation time in seconds (S) using query sequences with lengths of 32, 64, 96, 128.

Fig. 10. Average computation time in seconds (S) using query sequences with lengths of 160, 192, 224, 256.

Fig. 11 shows the memory consumption of the application in megabytes (MB). A linear relationship
between the memory consumption and reference sequence length can be deduced from the illustration.

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 240
 Vol. 5, No. 3, November 2019, pp. 230-242

 Chua et al. (Implementation of hyyrö’s bit-vector algorithm using advanced vector extensions 2)

The memory consumption was consistent for each reference data-set regardless of the length of the
query sequence. It consumes approximately the size of the reference sequence in bytes plus 40 MB.
Therefore, it can be argued that it has achieved ϴ(n) memory consumption. Finally, the power
consumption was investigated, and it reveals that the program consumes approximately 20 – 25W
regardless of sequence length.

Fig. 11. Memory Consumption in megabytes (MB).

4. Conclusion

This study presents an implementation of Hyyrö’s bit-vector algorithm for pairwise DNA sequence
alignment using AVX2 instruction set architecture to run on modern processors. To our knowledge,
this is an initial attempt of developing the algorithm to take advantage of SIMD computing capabilities
of AVX2 on recent processors which advances the idea of the possibility of implementing other compute-
intensive applications on GPP. Based on the results of the experimentation, the AVX2 implementation
has achieved an I/O load time of ϴ(n) since it is mostly impacted by the length of the reference sequence.
It can also be argued that the computation time complexity of the implementation is longer than the
ideal ϴ(n) time complexity due to the simulation of the 256-bit addition and left shift which entails the
carry out to be cascaded to the higher-order elements, and architectural limitations that causes
instruction to operate based on its native machine word size (64-bits) and not on the actual SIMD vector
size; thus, each operation runs at ϴ(⌈m/64⌉) and the implementation computes at ϴ(n*⌈m/64⌉), similar
to Fredriksson’s [24] implementation and on a par with Faro and Külekci’s [25] implementation that
reached a computation time of ϴ(nm). Furthermore, the implementation has a memory consumption of
ϴ(n), wherein it requires approximately twice the size of the reference sequence in bytes plus 40 MB.
This study’s implementation displayed a linear growth of memory consumption. In contrast, Faro and
Külekci’s [25] implementation showed exponential growth. Performing pairwise sequence alignment
using Hyyrö’s algorithm is just the first step. Future research works may want to attempt extending or
removing the limitations on the query sequence length or to explore multiple sequence alignment and
multi-core or multi-threaded programming.

References

[1] S. P. Adey, “GPU Accelerated Pattern Matching Algorithm for DNA Sequences to Detect Cancer using
CUDA Dissertation,” Coll. Eng. Pune, 2013, available at : Google Scholar.

[2] A. Mahram, “FPGA acceleration of sequence analysis tools in bioinformatics,” Bost. Univ. Coll. Eng., 2013,
available at : Google Scholar.

[3] R. Bhukya and D. Somayajulu, “2-Jump DNA Search Multiple Pattern Matching Algorithm,” Int. J.
Comput. Sci. Issues, vol. 8, no. 3, pp. 320–329, 2011, available at : Google Scholar.

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=GPU+accelerated+pattern+matching+algorithm+for+DNA+sequences+to+detect+cancer+using+CUDA&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA+acceleration+of+sequence+analysis+tools+in+bioinformatics&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=2-jump+DNA+search+multiple+pattern+matching+algorithm&btnG=

241 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 5, No. 3, November 2019, pp. 230-242

 Chua et al. (Implementation of hyyrö’s bit-vector algorithm using advanced vector extensions 2)

[4] I. Murnaghan, “The Importance of DNA,” Explore DNA, 2019. [Online]. Available:
http://www.exploredna.co.uk/the-importance-dna.html.

[5] X. Chang, F. A. Escobar, C. Valderrama, and V. Robert, “Exploring Sequence Alignment Algorithms on
FPGA-based Heterogeneous Architectures.,” in IWBBIO, 2014, pp. 330–341, available at : Google Scholar.

[6] S. Memeti and S. Pllana, “Accelerating DNA Sequence Analysis Using Intel(R) Xeon Phi(TM),” in 2015
IEEE Trustcom/BigDataSE/ISPA, 2015, pp. 222–227, doi: 10.1109/Trustcom.2015.636.

[7] H. Hyyrö, “A bit-vector algorithm for computing Levenshtein and Damerau edit distances,” Nord. J.
Comput., vol. 10, no. 1, pp. 29–39, 2003, available at : Google Scholar.

[8] G. Myers, “A fast bit-vector algorithm for approximate string matching based on dynamic programming,”
J. ACM, vol. 46, no. 3, pp. 395–415, May 1999, doi: 10.1145/316542.316550.

[9] “Genome,” NCBI. [Online]. Available: https://www.ncbi.nlm.nih.gov/genome. [Accessed: 12-Feb-2019].

[10] L. Langner and M. S. D. Weese, “Parallelization of Myers fast bit-vector algorithm using GPGPU,”
Diploma/Thesis, Freie Universität, Berlin, 2011, available at: Google Scholar .

[11] K. Benkrid, A. Akoglu, C. Ling, Y. Song, Y. Liu, and X. Tian, “High Performance Biological Pairwise
Sequence Alignment: FPGA versus GPU versus Cell BE versus GPP,” Int. J. Reconfigurable Comput., vol.
2012, pp. 1–15, 2012, doi: 10.1155/2012/752910.

[12] W. Muła, N. Kurz, and D. Lemire, “Faster Population Counts Using AVX2 Instructions,” Comput. J., vol.
61, no. 1, pp. 111–120, Jan. 2018, doi: https://doi.org/10.1093/comjnl/bxx046.

[13] “Basics of Single Instruction Multiple Data (SIMD),” Code Project, 2011. [Online]. Available:
https://www.codeproject.com/Articles/146414/Basics-of-Single-Instruction-Multiple-Data-SIMD.
[Accessed: 12-Feb-2019].

[14] C. Lomont, “Introduction to intel advanced vector extensions,” Intel White Pap., pp. 1–21, 2011, available
at : Google Scholar.

[15] S. A.Shehab, A. Keshk, and H. Mahgoub, “Fast Dynamic Algorithm for Sequence Alignment Based On
Bioinformatics,” Int. J. Comput. Appl., vol. 37, no. 7, pp. 54–61, Jan. 2012, doi: 10.5120/4624-6636, available
at : http://research.ijcaonline.org/volume37/number7/pxc3876636.pdf.

[16] P. Pandiselvam, T. Marimuthu, and R. Lawrance, “A Comparative Study on String Matching Algorithm of
Biological Sequences,” CoRR, vol. abs/1401.7416, 2014, available at : http://arxiv.org/abs/1401.7416.

[17] J. Tarhio and E. Ukkonen, “Approximate Boyer–Moore String Matching,” SIAM J. Comput., vol. 22, no.
2, pp. 243–260, Apr. 1993, doi: 10.1137/0222018.

[18] M. Gou, “Algorithms for String matching.” July, 2014, available at: Google Scholar.

[19] S. M. Vidanagamachchi, S. D. Dewasurendra, R. G. Ragel, and M. Niranjan, “Commentz-Walter: Any
Better than Aho-Corasick for Peptide Identification?,” Int. J. Res. Comput. Sci., vol. 2, no. 6, pp. 33–37,
Nov. 2012, doi: 10.7815/ijorcs.26.2012.053.

[20] J. Zhu, J. S. Liu, and C. E. Lawrence, “Bayesian adaptive sequence alignment algorithms,” Bioinformatics,
vol. 14, no. 1, pp. 25–39, Feb. 1998, doi: 10.1093/bioinformatics/14.1.25.

[21] B.-J. M. Webb, “BALSA: Bayesian algorithm for local sequence alignment,” Nucleic Acids Res., vol. 30, no.
5, pp. 1268–1277, Mar. 2002, doi: 10.1093/nar/30.5.1268.

[22] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,” in Soviet physics
doklady, 1966, vol. 10, no. 8, pp. 707–710, available at : Google Scholar.

[23] Y. Nataliani and T. Wellem, “Implementation of Bit-Vector Algorithm for Approximate String Matching
on Rhodopsin Protein Sequence,” Int. J. Comput. Appl., vol. 72, no. 14, pp. 34–38, Jun. 2013, doi:
10.5120/12565-9214.

[24] K. Fredriksson, “Row-wise Tiling for the Myers’ Bit-Parallel Approximate String Matching Algorithm,”
2003, pp. 66–79, doi: 10.1007/978-3-540-39984-1_6.

[25] S. Faro and M. O. Külekci, “Fast Packed String Matching for Short Patterns,” 2013, pp. 113–121, doi:
10.1137/1.9781611972931.10.

http://www.exploredna.co.uk/the-importance-dna.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Exploring+sequence+alignment+algorithms+on+FPGA-based+heterogeneous+architectures&btnG=
https://doi.org/10.1109/Trustcom.2015.636
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+bit-vector+algorithm+for+computing+Levenshtein+and+Damerau+edit+distances&btnG=
https://doi.org/10.1145/316542.316550
https://www.ncbi.nlm.nih.gov/genome
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Parallelization+of+Myers+fast+bit-vector+algorithm+using+GPGPU&btnG=
https://doi.org/10.1155/2012/752910
https://doi.org/10.1093/comjnl/bxx046
https://www.codeproject.com/Articles/146414/Basics-of-Single-Instruction-Multiple-Data-SIMD
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Introduction+to+Intel%28R%29+Advanced+Vector+Extensions&btnG=
http://research.ijcaonline.org/volume37/number7/pxc3876636.pdf
http://arxiv.org/abs/1401.7416
https://doi.org/10.1137/0222018
https://scholar.google.com/scholar?q=%22Algorithms+for+string+matching%22%2BGou&hl=en&as_sdt=0,5.
https://doi.org/10.7815/ijorcs.26.2012.053
https://doi.org/10.1093/bioinformatics/14.1.25
https://doi.org/10.1093/nar/30.5.1268
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Binary+codes+capable+of+correcting+deletions%2C+insertions%2C+and+reversals&btnG=
https://doi.org/10.5120/12565-9214
https://doi.org/10.1007/978-3-540-39984-1_6
https://doi.org/10.1137/1.9781611972931.10

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 242
 Vol. 5, No. 3, November 2019, pp. 230-242

 Chua et al. (Implementation of hyyrö’s bit-vector algorithm using advanced vector extensions 2)

[26] E. F. D. O. Sandes, A. Boukerche, and A. C. M. A. De Melo, “Parallel Optimal Pairwise Biological Sequence
Comparison,” ACM Comput. Surv., vol. 48, no. 4, pp. 1–36, Mar. 2016, doi: 10.1145/2893488.

[27] J. Hoffmann, D. Zeckzer, and M. Bogdan, “Using FPGAs to Accelerate Myers Bit-Vector Algorithm,” 2016,
pp. 535–541, doi: 10.1007/978-3-319-32703-7_104.

[28] H. Hyyrö and G. Navarro, “Faster Bit-Parallel Approximate String Matching,” 2002, pp. 203–224, doi:
10.1007/3-540-45452-7_18.

[29] D. N. S. S. Liyanage, G. V. M. P. A. Fernando, D. D. M. M. Arachchi, R. D. D. T. Karunathilaka, and A.
S. Perera, “Utilizing Intel Advanced Vector Extensions for Monte Carlo Simulation based Value at Risk
Computation,” Procedia Comput. Sci., vol. 108, pp. 626–634, 2017, doi: 10.1016/j.procs.2017.05.156.

[30] “Intel® 64 and IA-32 Architectures Software Developer Manuals,” Intel Software Developer Zone, 2019.
[Online]. Available: https://software.intel.com/en-us/articles/intel-sdm.

[31] P. Gepner, “Using AVX2 Instruction Set to Increase Performance of High Performance Computing Code,”
Comput. Informatics, vol. 36, no. 5, pp. 1001–1018, 2017, doi: 10.4149/cai_2017_5_1001.

[32] D. Kusswurm, Modern X86 Assembly Language Programming, 2014, doi: 10.1007/978-1-4842-0064-3.

[33] “Intel® 64 and IA-32 Architectures Optimization Reference Manual,” Intel Corporation, 2019. [Online].
Available: https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimizatio
n-manual.pdf. [Accessed: 12-Oct-2019].

https://doi.org/10.1007/978-3-319-32703-7_104
https://doi.org/10.1007/3-540-45452-7_18
https://doi.org/10.1016/j.procs.2017.05.156
https://software.intel.com/en-us/articles/intel-sdm
https://doi.org/10.4149/cai_2017_5_1001
https://doi.org/10.1007/978-1-4842-0064-3
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf

