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1. Introduction 

Smart aquaponics management is significant in providing efficient resource consumption. For this to 
realize, cultivars’ evaluation is a necessary step to identify the system’s performance. Some of the 
subsystems in the aquaponics setup involve fish feeding systems, irrigation control, nutrient mixture 
automation, adaptive temperature maintenance, and lighting systems. Determining the conditions of 
cultivars can be utilized as feedback on how these subsystems are utilized and how they performed to 
further optimize the technology in adapting to the needs of a high-quality and high-quantity aquaponics’ 
products. 
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 Classification of lettuce life or growth stages is an effective tool for 
measuring the performance of an aquaponics system. It determines the 
balance in water nutrients, adequate temperature and lighting, other 
environmental factors, and the system’s productivity to sustain cultivars. 
This paper proposes a classification of lettuce life stages planted in an 
aquaponics system. The classification was done using the texture features 
of the leaves derived from machine vision algorithms. The attributes 
underwent three different feature selection processes, namely: Univariate 
Selection (US), Recursive Feature Elimination (RFE), and Feature 
Importance (FI) to determine the four most significant features from the 
original eight attributes. The features selected were used for training four 
estimators from Decision Trees Classifier (DTC), Gaussian Naïve Bayes 
(GNB), Stochastic Gradient Descent (SGD), and Linear Discriminant 
Analysis (LDA). The models trained using DTC and SGD were then 
optimized as they have hyperparameters for tuning. A comparative analysis 
among Machine Learning (ML) algorithms was conducted to identify the 
best-performing model with the given application. The best features were 
derived from US and FI as they have the same top four features using the 
DTC estimator optimized with the hyperparameters tuned to max depth 
having 5, criterion equated to ‘Gini', and splitter was set to 'Best'. The 
accuracy obtained from cross-validation evaluation resulted in 87.92%. 
Considering consistency with hold-out validation, LDA outperforms 
optimized DTC even with lower accuracy of 86.67%. This accuracy of LDA 
outperformed DTC due to its sufficient fit for generalizing the testing data 
on classifying lettuce growth stage. 
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Aquaponics is the integration between a hydroponic unit and an aquaculture unit [1]. Numerous 
problems are existing in maintaining a productive aquaponics system. One highlight is energy 
consumption, as this system heavily relies on an artificial environment powered by electronic devices that 
are energy operated. Le et al. [2] focused on providing numerical investigation for a Recirculating 
Aquaponic System (RAS). The heating method for this system consumes a high amount of energy for 
an electric heater that maintains the water temperature to achieve optimum temperature for cultivar 
growth. Automating and monitoring the environment of a smart aquaponics is another challenge to be 
considered [3]. It includes numerous products not only limited to plants but also aquatic cultivars such 
as fish, which is the automation system must consider the living necessities of both the products from 
the hydroponics and aquaculture units. 

With the problems in hand, monitoring the performance and efficiency of the subsystems (i.e., energy 
system and automation) is indispensable. A way to do this is by looking at the cultivars to establish a 
relationship between the subsystem and its performance.  In this study, the cultivar focuses on the 
hydroponic crop that is the lettuce. Evaluating the lettuce involved the study of its growth and life stages 
with relation to different physical features. A study conducted used the weight of the lettuce and its 
number of leaves to assess the quality of light for lettuce growth in a hydroponics setup [4]. Another 
study considered the stem’s diameter, and the plants’ height and weight [5] to regulate the data obtained 
for the Internet of Things (IoT) applications. One of the most significant and most studied attributes 
of a crop is the texture of its leaves [6] as several studies have proven its capability to determine the life 
status (i.e., diseases) of different plant species [7]-[10]. Texture, among other features: shape and color, 
perform better by 5.2% and 6%, respectively, with an identification rate of 92% for image processing 
recognition [11]. Thus this was utilized for building the dataset as extracted through image processing. 

Machine Learning (ML) models integrated with machine vision algorithms have been used for 
agricultural applications, as this would ensure an increase in crop production through automation [12]. 
Several studies prove this claim of the integration’s effectivity. Mondal et al. [13] proposed the use of 
image processing techniques to extract the morphological features of okra leaves and use the dataset to 
train Naïve Bayes estimator for classifying the Yellow Vein Mosaic Virus (YVMV) disease resulting to a 
model with 96.78% accuracy. Another recent research provided a model using Artificial Neural Network 
(ANN) to assess pasture sward nutrient content on crop leaves related to environmental parameters 
yielding 94% accuracy [14]. 

In this paper, the effectivity of machine learning and machine vision integration set the proposal to 
have an objective of classifying the three main life stages of lettuce through the best-performing machine 
learning model trained with the training data from the texture features. It was specifically done through 
texture feature extraction utilizing machine vision algorithms followed by three feature selection 
processes. We used the selected attributes to train four machine learning estimators that two of them 
were optimized for improving model performance. 

2. Method 

The study applied machine vision algorithms for data gathering and extraction of features from the 
leaves of lettuce at different stages. Data processing techniques were used for feature selection and 
standardizing their values. Four machine learning algorithms were compared to produce the most 
appropriate model for the application. Two of the algorithms underwent optimization to improve 
accuracy for classifying lettuce life stage. Fig. 1 shows the system architecture. 

 

Fig. 1. System architecture. 
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2.1. Data Gathering and Extraction   

Data were gathered for ten weeks through a smartphone camera, capturing images of lettuce planted 
in August of 2019 from a smart aquaponics farm in Morong, Rizal, Philippines. Thirty different lettuce 
crops were captured each week, yielding to a total of 300 sample instances. The images underwent image 
processing algorithms. The process involved machine vision techniques such as background removal and 
conversion of RGB images to Gray. To extract the features, Haralick Texture Feature analysis was 
utilized. This algorithm is a statistical entity used to emphasize certain texture properties of an image. It 
computes for the rotation-invariant value with a recent method of using image rotation of an isolated 
microstructural object [15]. In Fig. 2 is shown one of the layers of the hydroponics unit of the aquaponics 
system, while Fig. 3 shown one of the images acquired that went through Haralick texture feature 
extraction. The Haralick function calculated the Gray Level Co-occurrence Matrix (GLCM) of the 
images processed. GLCM indices are utilized for quantifying heterogeneous surface patterns and 
roughness in digital images, further highlighting specific properties of texture [16]. 

From the function as mentioned above, eight unique features were derived, namely: contrast, 
correlation, energy, homogeneity, entropy, variance, first information measured correlation, and second 
information measured correlation. 

 
Fig. 2. Hydroponics unit setup. 

 
Fig. 3. Image processed through Haralick. 

2.2. Feature Selection 

Feature selection utilized for texture features is important in classification problems as this can 
improve classification accuracy while selecting the most relevant attributes of a dataset and decreasing 
computation time [17]. There are three feature selection methods done in identifying the four most 
significant attributes from the original eight features extracted from the data. These are Univariate 
Selection (US), Recursive Feature Elimination (RFE), and Feature Importance (FI). The US is a 
technique commonly used for developing a multigene predictor. The algorithm determines genes that 
have P-values lower than a cutoff point compared to genes and survival under univariate Cox models. 
Utilizing this technique would pick features that are singly related to survival RFE [18]. On the other 
hand, It is an algorithm that uses estimators to identify the most significant features. Initially, the dataset 
is trained with a specific estimator, then the most important features are determined through 
implementing a weight-based backward feature elimination or selection method. This is done by 
removing one feature for each iteration that the estimator runs [19]. In this study, the estimator for 
RFE used was Logistic Regression (LR) as it relies on probability for assigning examinations for which 
data belong in a discrete class [20]. FI was also used as this is capable of ranking the machine learning’s 
feature vector elements for the significance of the model’s accuracy [21].  

Fig. 4 to Fig. 6 showed the results of the three feature selection techniques used to pick features with 
the highest k scores. The figures only show 7 features out of 8 because First and Second Information 
Measure Correlation has a significant of -0.974. The negative value corresponds to an inversely 
proportional relationship as the first information measure correlation has negative integers. The negative 
integers cannot be processed using the feature selection process. However, it does significantly affect the 
model as it is related to the second information measure correlation, which could already represent two 
attributes into one.  It can be understood from the figures that though the order of significant attributes 
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from both US and FI are different, the four most significant features with the highest k scores are the 
same, namely: Variance_H4, Entropy, Energy, and the Information Measure Correlation. From RFE, 
the top four attributes are the ones with the lowest k scores: Information Measure Correlation, 
Variance_H4, Entropy, and Homogeneity. Thus, two sets of datasets are used for the training of the 
estimators to produce intelligent models. Only four attributes are considered in the study as using all 
the features resulted in a significant difference in the cross, and hold-out validation performances were 
87.92% and 76.67% respective accuracy. Thus, the model is not properly fit. Four attributes are selected 
as the other three attributes in the US have 0 k scores, setting a standard for RFE and FI. 

 

Fig. 4. Univariate selection k score result. 

 

Fig. 5. Recursive feature elimination k score result. 

 

Fig. 6. Feature importance k score result. 

2.3 Machine Learning Models  

Four ML estimators were used to produce different models for lettuce growth stage classification 
using the texture attributes with consideration of the four most important features selected beforehand. 
These four models are Decision Trees Classifier (DTC), Gaussian Naïve Bayes (GNB), Stochastic 
Gradient Descent (SGD), and Linear Discriminant Analysis (LDA). 

Decision trees pattern itself to a structure of a tree on which it has a root node containing all the 
samples of the feature with the most significant contribution for the classification and expanding to 
either binary on non-binary classifications resulting in the internal nodes. Each internal node represents 
each feature from the given dataset. The internal nodes can be composed of a single layer or multiple 
layers depending on the variables needed to be considered in producing a final decision. The process of 
classifying relies on a top-down recursive system. These internal nodes branch out to leaf nodes according 
to the results of the attribute test, which are the final classifiers [22]. DTC structure is shown in Fig. 7. 
Equation (1) defines the pruning process for minimizing the pruning parameter. Training of the whole 
classification learner came after pruning and succeeded by performance measurement [23]. 

𝑃 =
𝑒𝑟𝑟(𝑝𝑟𝑢𝑛𝑒(𝑇,𝑡),𝑆)−𝑒𝑟𝑟(𝑇,𝑆)

|𝑙𝑒𝑎𝑣𝑒𝑠(𝑇)|−|𝑙𝑒𝑎𝑣𝑒𝑠(𝑝𝑟𝑢𝑛𝑒(𝑇,𝑡))|
  

Utilizing the default DTC hyperparameters, the features selected from the US, RFE, and FI were 
used to train the estimator. Since the US and FI have the same attributes selected, only two models were 
produced from DTC. Fig. 7 represents one of the two decision trees modeled. Shown below is the tree 
trained model with the four features from RFE. It started with a single attribute, which is entropy as a 
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root node, implying to be the most significant contributor for the model. The root node branches into 
a binary tree, in which the true value corresponds to another feature is the measured information 
correlation, and the false value corresponds to entropy. The DTC consists of 9 layers of internal nodes 
until reaching the final leaf nodes. 

  

Fig. 7. Decision tree model using default hyperparameters. 

Gaussian Naïve Bayes (GNB) is one of the simplest and most effective machine learning algorithms 
for classification [24]. It was implemented with the problem as it can individualize the attributes that 
may or may not be dependent and correlated to each other [25] instead of what DCT does. So, It can 
be determined the independent contribution of each feature. The method assesses each category depends 
on its prior knowledge by estimating the probability of a new observation from a predefined category 
[26].  

Chen et al. [27] similarly applied the method that proposed two approaches for exploring the 
preferred prior GNB settings considering the individual impacts of the predictors. Shown in equation 2 
is the concept of Naïve Bayes [28]. 
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𝑃(𝑐|𝑥) =  
𝑃(𝑥|𝑐) 𝑃(𝑐)

𝑃(𝑥)
  (2) 

where 𝑃(𝑐|𝑥) is the posterior probability of class (𝑐, target) given predictor (𝑥, attributes), 𝑃(𝑐) is the 
conditional probability of the class, 𝑃(𝑥|𝑐) is the likelihood that is the probability of predictor given class, 
and 𝑃(𝑥) is the probability of the observed pulse or predictor.  

With the concept, the trained model depends on the likelihood or probability of one attribute to 
produce a classification whether the lettuce is under vegetative, head development, or harvest without 
considering its relation to the other three available attributes, which infers to the algorithms’ capability 
for mutual independency. The other three attributes also underwent an independent GNB process to 
determine their individual contributions. A classification report is shown in Table 1 and Table 2 to 
compare the performance of GNB using US or FI and RFE features. 

It can be inferred from the tables using two sets of different attributes that the stage of Head 
Development was the most precisely classified among all lettuce life stages, with an average of 98%. The 
Vegetative stage comes in second with an average precision of 92%, and the Harvest stage is the most 
difficult for the model to classify with an average precision of 71.5%. 

Table 1.  Classification Report for GNB Models Using Features from US or FI.  

Growth Stage 
Performance Metrics 

Precision Recall  F1 Score 

Vegetative 92% 100% 96% 

Head Development 96% 73% 83% 

Harvest 71% 94% 81% 

Table 2.  Classification Report for GNB Models Using Features from RFE.  

Growth Stage 
Performance Metrics 

Precision Recall  F1 Score 

Vegetative 92% 100% 96% 

Head Development 100% 73% 85% 

Harvest 72% 100% 84% 

 

Stochastic Gradient Descent (SGD) is an iterative ML algorithm that determines the minimum point 
of an objective function by starting at random points in a given function equated to zero until the slope 
arrives at the lowest point [29]. The algorithm can address the issue of high computational cost by 
having faster convergence [30]. To minimize an objective function that has the form of the sum shown 
in (3), which w is minimized to estimate the parameter Q(w), and the parameter Qi represents the 
observation for each iteration when training the dataset. 

𝑄(𝑤) =
1

𝑛
∑ 𝑄𝑖(𝑤)𝑛

𝑖=1   

It can be drawn from the confusion matrices in Fig. 8 and Fig. 9 that using US and FI features 
produced a better SGD model than from RFE features. It was able to classify the Harvest stage 15 times 
out of 18 while using RFE was not able to classify any sample with the Harvest stage. For the Head 
Development stage, US and FI features were able to train a model with 83.33% accuracy while utilizing 
RFE yielded to 96.67% accuracy. Lastly, the former features for classifying the Vegetative stage obtained 
83.33% while the latter features were 100%. The US and FI attribute trained a model with an average 
of 83.33% for each classification, while RFE was only 65.56%, despite having a better performance with 
classifying Head Development and Vegetative stages, the model was not successful in correctly classifying 
any sample from the Harvest stage. 
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Fig. 8. Default SGD using US or FI confusion 

matrix. 

 

Fig. 9. Default SGD using RFE confusion matrix. 

Linear Discriminant Analysis (LDA) is often used as a feature reduction algorithm, but it can also 
be used as an effective estimator for classifying problems. It is considered optimal Naïve Bayes’ classifier 
for discrete classification if the assumptions regarding normality and homoscedasticity hold. LDA 
follows two general assumptions. First, the conditional probabilities p(x|C1) and p(x|C2) have 
multivariate normal distributions, and the second, the two classes have equal covariance matrices, also 
known as homoscedasticity [31]. Fig. 10 shows a comparative plot for the testing data and the predicted 
data as the output of the model trained from US or FI features. The model using the features from RFE 
produced an output of predicted values compared to the same testing data is shown in Fig. 11. Both 
models yielded the same results with an accuracy of 86.67%. 

 

Fig. 10. LDA test vs. predicted values using US or 

FI. 

 

Fig. 11. LDA test vs. predicted values using RFE. 

2.4 Optimization 

Optimization is a method for determining the best combination of hyperparameters for modeling a 
certain machine learning estimator that relies on the specific dataset used for training [32]. This process 
does not guarantee improved accuracy, mainly if the default parameters can already produce the model’s 
highest accuracy. However, optimization can help determine which combination can still further 
improve the model. Out of the four estimators, only two of them, DTC and SGD, were optimized as 
the other two do not have hyperparameters for tuning.  

Fig. 12 shows one of the optimized DTC models that the root node started with one attribute from 
RFE, which is the variance extracted from the texture feature. It implies that, for the optimized model, 
a variance is the most significant contributor among the features for the optimized model trained, unlike 
the model trained from the default parameters on which entropy was the most significant contributor. 
The root node branches out into a binary tree, deciding if it falls under information measure correlation 
or entropy, branching out to several binary layers. It overall consists of four internal nodes before deriving 
to an accurate decision, which is a better model in comparison to the model with default parameters as 



180 International Journal of Advances in Intelligent Informatics   ISSN 2442-6571 

 Vol. 6, No. 2, July 2020, pp. 173-184 

 

 

 Lauguico et al. (Lettuce life stage classification from texture attributes using machine learning estimators and ...) 

it had nine internal nodes implying higher computational cost. The leaf nodes concluded on 
differentiating the three life stages according to the series of decisions based on the training of attributes. 

 

Fig. 12. Decision tree model using optimized hyperparameters. 

DTC optimization was done through GridSearchCV. Originally it had default parameters of criterion 
= ‘gini’, splitter = ‘best’, and max depth = ‘none’. Tuning the hyperparameters resulted in a combination 
of the criterion being set to ‘gini,’ max depth equal to 5, and the splitter set to ‘best’ with the best 
accuracy score of 90.67%. 

Optimization of SGD was also done through GridSearchCV. Initially, its default parameters are alpha 
= 0.0001, loss = ‘hinge’, and penalty =’l2’. Tuning defines hyperparameters set to alpha equal to 0.0001, 
loss set to ‘log,’ the penalty set to ‘elasticnet,’ and the l1 ratio equal to 0.3. This combination yielded to 
the best accuracy score of 86.67%. Fig. 13 and Fig. 14 are shown the confusion matrices. The average 
accuracy for each lettuce life stage for the attributes from US or FI is 82.22%, implying that the non-
optimized model was better by 1.11%. However, the optimized model trained with featured derived 
from RFE significantly increased from 65.56% to 92.22%. 

 
Fig. 13. Optimized SGD using US or FI confusion 

matrix. 

 
Fig. 14. Optimized SGD using RFE confusion 

matrix. 
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3. Results and Discussion 

The results for each estimator trained to provide a model were summarized by determining their 
performance based on cross-validation and hold-out validation. Cross-validation is a method for dividing 
the dataset into ten splits, and each of the split had experienced being both a training and testing dataset. 
Hold-out validation simply selects 20% of the data to be the testing dataset while the remaining is for 
training throughout the validation. Under these validations are metrics as follows: Accuracy denotes the 
degree of correctness of the predicted values in relation to the actual values. At the same time, the F1 
score shows a balance of precision and recall. Precision deals with how often the predicted values are 
correct when the predicted values are positive. Specificity often describes the predicted is negative when 
actual is negative, while False Positive Rate (FPR) is how incorrect the specificity is. These are very 
important metrics as they can show if the model is underfitting or underfit. For DTC and LDA, the 
optimized models were considered in the discussion of results, while GNB and LDA retain their original 
model. 

3.1. Cross-validation and hold-out validation  

Tables 3 and Table 4 are the cross and hold-out validation of models trained with features from US 
and FI, respectively. Table 3 showed the mean and variance for the accuracy and F1 score. It can be 
interpreted that DTC is the best performing among the models having the highest accuracy mean and 
lowest accuracy variance. For its F1 score, it has the highest mean and second to the least variance. In 
Table 4, it can be interpreted that LDA is the best-performing model having all the best results for every 
metric.  

Table 3.  Cross-Validation Result from US or FI. 

Estimator Accuracy Mean Accuracy Variance F1 Score Mean 
F1 Score 

Variance 

DTC 87.92% 6.31% 87.52% 7.09% 

GNB 86.67% 7.41% 86.70% 7.41% 

SGD 84.17% 5.20% 82.02% 10.02% 

LDA 86.67% 6.40% 86.72% 6.29% 

Table 4.  Hold-Out Validation Result from US or FI. 

Estimator Accuracy  Specificity  False Positive Rate Precision F1 Score 

DTC 83.33% 100.00% 0.00% 85.83% 83.33% 

GNB 85.00% 94.44% 5.56% 87.54% 85.00% 

SGD 83.33% 50% 50% 56.62% 81.85% 

LDA 86.67% 100.00% 0.00% 90.06% 86.62% 

 

The cross and hold-out validation of models trained with features from RFE are shown in Table 5 
and Table 6. Looking at Table 5, DTC is still the best-performing model in terms of accuracy, while 
GNB is the best model if the F1 score is considered as it has the highest mean. LDA and GNB are the 
best models from hold-out validation in Table 6, having the same results for all metrics. 

Table 5.  Cross-Validation Result from RFE. 

Estimator Accuracy Mean Accuracy Variance F1 Score Mean 
F1 Score 

Variance 

DTC 87.50% 5.89% 86.50% 6.85% 

GNB 87.08% 7.32% 87.16% 7.25% 

SGD 84.17% 6.40% 84.02% 5.65% 

LDA 86.67% 7.64% 86.67% 7.64% 
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Table 6.  Hold-Out Validation Result from RFE. 

Estimator Accuracy  Specificity  False Positive Rate Precision F1 Score 

DTC 80.00% 88.89% 11.11% 81.36% 80.09% 

GNB 86.67% 100.00% 0.00% 90.06% 86.62% 

SGD 81.67% 44.44% 55.56% 85.64% 79.69% 

LDA 86.67% 100.00% 0.00% 90.06% 86.62% 

 

3.2. Algorithm Comparative Analysis 

 Fig. 15 and Fig. 16 summarized the comparison of all the models in terms of the cross and hold-
out validation. It can be inferred that the models trained with features from US and FI, that cross-
validation result is usually significantly higher than the hold-out validation results with exception to 
LDA wherein the three metrics have almost the same values. This denotes that DTC, GNB, and SGD 
models are overfitting, while only the LDA model has the right fit. For the models trained using RFE 
attributes, GNB and LDA have almost constant metrics between cross and hold-out validation, 
concluding that the two models have the right fit while the other two models overfit. On the other 
hand, though DTC using RFE feature-selected attributes has the highest cross-validation accuracy 
similar to US and FI, its hold-out validation performance is deficient, making the model overfit. SGD 
using RFE features is also overfit. 

Optimized DTC has the highest accuracy in terms of cross-validation for features from all feature 
selection methods used in training. At the same time, the LDA model is consistent for all the training 
from the selected features, and it almost has the consistent results for both cross and hold-out validation. 
To conclude, implying that it was the fittest model for the given dataset with an accuracy of 86.67%. 

 
Fig. 15. Model performance comparative analysis for 

US or FI. 

 
Fig. 16. Model performance comparative analysis 

for RFE. 

4. Conclusion 

Classifying lettuce life stage is an important tool for determining its growth rate and the effectiveness 
of the performance of the entire aquaponics system with its controlled environment. A vision-based 
algorithm was implemented for extracting eight texture attributes from the lettuce images gathered. The 
features extracted were selected through three different feature selection techniques, Univariate 
Selection, Recursive Feature Elimination, and Feature Importance. They yield to two unique sets of four 
features used for training four estimators. The estimators trained were Decision Classification Tree, 
Naïve Bayes, Stochastic Gradient Descent, and Linear Discriminant Analysis. Two of them were 
optimized, and the performances were compared among the models. Though optimized DTC was the 
best performing during cross-validation with an accuracy of 87.92%, LDA is the most consistent model 
when looking at both the cross and hold-out validation with a classification accuracy of 86.67%. It is 
recommended for future works to use other feature selection or reduction methods such as Principal 
Component Analysis and use the selected attributes to train other machine learning estimators such as 
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K Nearest Neighbors or Support Vector Machine. Other optimization algorithms can be done as well, 
like the use of Random Search CV. 
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