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1. Introduction 

The coffee industry made immense global contributions to society, placing as the second most traded 
commodity next to crude oil worldwide. With an estimated amount of 15 billion trees planted, it 
supports the demand of 25 million producers around several countries [1]. In most Asian territories, the 
coffee industry paves employment for several families to cope up with their daily needs. In the 
Philippines, the Coffea Liberica is a popular coffee variant referred to as Barako. The sought-after 
product possesses a distinct flavor and aroma that interest most consumers. Unlike other varieties, the 
Barako tree is difficult to grow as it consumes a larger land area, making it a less encouraging option for 
farmers. Also, Barako cultivation is greatly affected by widespread diseases. According to the Philippines 
coffee industry roadmap, in 2015, Liberica only yielded 257 metric tons (MT) of coffee beans, 
contributing only 1% to the whole coffee production. At the same time, Robusta produced an average 
of 24,924 MT, providing 69%, followed by Arabica with 8717 MT at 24%, and Excelsa with 2273 MT 
at 6%. Since the rust invasion of 1896, Barako became less enticing to grow due to farmers opting for 
other alternatives. Considering that Excelsa being less vulnerable against drought and most infections 
[2][3]. 

Even today, it remains a challenge for experts to provide an immediate diagnosis for plant diseases. 
The lengthy procedure frequently turns to a massive spread of infection that causes excessive losses [4]. 
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 This work presents the application of recent Deep Convolutional Models 
(DCM) to classify Barako leaf diseases. Several selected DCMs performed 
image classification tasks using Transfer Learning and Fine-Tuning, 
together with data preprocessing and augmentation. The collected dataset 
used totals to 4,667. Each labeled into four different classes, which included 
Coffee Leaf Rust (CLR), Cercospora Leaf Spots (CLS), Sooty Molds (SM), 
and Healthy Leaves (HL). The DCMs were trained using the partial 4,023 
images and validated with the remaining 644. The classification results of 
the trained models VGG16, Xception, and ResNetV2-152 attained overall 
accuracies of 97%, 95%, and 91%, respectively. By comparing in terms of 
True Positive Rate (TPR), we found that Xception has the highest number 
of correct classifications of CLR, VGG16 with SM, and CLS, while 
ResNetV2-152 with the lowest TPR for CLR. The evaluated results 
indicate that the use of Deep Convolutional Models with an adequate 
amount of data, proper fine-tuning, preprocessing, and transfer learning 
can yield efficient classifiers for identifying several Barako leaf diseases. This 
work primarily contributes to the growing field of deep learning, specifically 
for helping farmers improve their diagnostic process by providing a solution 
that can automatically classify Barako leaf diseases. 
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Moreover, such conditions originated from various types of fungi. These pathogens found on the leaves 
are highly contagious and spreads rapidly if not given immediate attention. Indicated in a study, that 
roughly 10% of the plant economy worldwide is being affected due to the devastating effects of plant 
infections and infestations [5]. Plant disease diagnosis involves complicated procedures like symptom 
analysis, pattern recognition, and several forms of tests on leaves that consume extensive periods and 
resources [6]. In most cases, improper diagnosis can cause immunity or less susceptibility of plants to 
treatment. The complexity of plant disease diagnosis caused farmers to produce less quantity and quality 
yield [7].  

With the advancement of technology, researchers discovered an alternative method to preserve 
natural resources. The continuous desire for improving Artificial Intelligence has primarily contributed 
to the increased performance of Deep Learning (DL), a trendsetting technology that can deliver 
innovative solutions for future endeavors [8]. In agriculture, DL aims to surpass existing human 
capabilities as it provides a rapid, accurate, and less costly approach to diagnose plant disease [9][10]. 

The growing interest of DL in agriculture leads to various studies that proved visual assessment is 
exceptionally reliable for plant disease diagnosis. In the last years, researchers have been producing DL 
solutions for agriculture in terms of classifying diseases and species using Convolutional Neural Networks 
(CNN) [11][12]. A DL model like CNN is composed of convolution layers that convolve a 3x3 filter 
over an image to generate feature or activation maps. The subsequent activations then pass through a 
set of down-sampling layers that reduce its values in half. The CNN then classify based on the activations’ 
probability, using a SoftMax function [13]. 

Recent studies had applied CNN models to classify leaf diseases. Marcos et al. [14] devised a CNN 
model with lesser depth and complexity compared to a more advanced deep convolutional model (DCM). 
Their work attained an accuracy score of 95% during the span of 500 epochs, with only a 0.10 loss using 
only 159 coffee leaf images. The results indicate that CNN has high potentials in contributing to plant 
disease diagnosis. However, the study added that using an advanced CNN model could improve disease 
diagnosis. In another study, Esgario et al. [15] trained several Deep Convolutional Models (DCM), 
including ResNet50, and VGG16 using 1747 Arabica leaf images. The researchers classified the biotic 
stress and its severity level. The trained DCNNs attained 95.47% with VGG16, which determined several 
biotic diseases, while ResNet50 efficiently validated each leaf condition with a 95.63% accuracy rate. 
However, when the models only performed the classification of symptoms, the accuracy went up to 97%. 
In their conclusion, increasing the volume of the dataset for DL models can further enhance the 
classification effectiveness. Employing image processing, relevant features of coffee diseases like coffee 
leaf rust (CLR), leaf miner, CLS, bacterial blight, brown leaf spots, and blisters can be isolated. A 
developed system by Barbedo [16] automatically eliminated any irrelevant features, like the background 
and unaffected areas, to reduce diagnosis errors and increase the accuracy to classify diseases apart. 

Furthermore, Bergstra and Bengio [17] indicated that generating an efficient DL model for 
classification, proper tuning of hyper-parameters is imperative. Training without prior adjustment of 
hyper-parameters can lead to poor performance, as to models that were tuned. Bergstra and Bengio [17] 
also added that hyper-parameters act like the "bells and whistles" in a learning algorithm, that shift the 
weights to generate the lowest possible errors.  

In this work, we trained several DCMs to classify Barako leaf diseases for immediate, inexpensive, 
and accurate results. It is worth mentioning that in our work, only limited types of leaf diseases are 
present due to some restrictions declared by farm owners in collecting samples. However, we still 
guarantee a substantial contribution to improve the cultivation of Barako coffee. Included also are future 
works determined for further enhancements of this work. 

2. Method 

In this section, we provide the following DCMs trained for the Barako leaf disease classification, 
which consists of the following: Xception, ResNetV2-152, and VGG16 [18]. The given description of 
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each DCM provides a further understanding of how each works accordingly. Our method also employs 
the use of data preprocessing, data augmentation, transfer learning, and fine-tuning. 

2.1. VGG16 

With the improvements in computing power, deep-layered networks became possible to train. VGG 
emanated with several configurations. However, the 16-depth version achieved better results than its 
counterparts in terms of application [19].  

VGG focuses specifically on the method of stacking more layers to improve classification accuracy. 
Fig. 1 illustrates VGG16's architecture. VGG16 accepts an input of 224x224x3 and uses a 3x3 convolving 
filter for all color channels simultaneously. The convolution process then generates a dot product output 
called an activation map or filter. The activation map helps the classifier to recognize images on the fully 
connected (FC) layers to calculate results. The architecture has a series of 2x2 Max-Pooling (MP) layers 
with a stride of two that down-sizes the image values in half before passing to the Softmax classifier. 
The classifier includes hidden units of 4096 neurons equipped with a ReLU activation. ReLU reduces 
pixel values to zero or 255 in a non-linear way and proved to increase model efficiency [20][21]. 

 
Fig. 1. VGG16 Architecture 

2.2. Xception 

Based on the study of Szegedy et al. [22], depth-wise separable convolutions outperformed the 
previous InceptionV3 module with a smaller number of parameters. However, the study indicated that 
parameter count did not contribute mainly to the improvements, but rather, on how Xception used it. 
The new profound method of reversing the process of the standard inception module, made Xception 
stand out with lesser computations and complexity [23]. Such findings interested us in applying 
Xception in this work. For a better interpretation, we provided Fig. 2 that illustrates the procedure of 
Xception.  

The method begins by using a 1x1 pointwise convolution on a spatial image that iterates over every 
color channel, followed by a depth-wise convolution that convolves using a channel-wise filter for each 
color channel individually. The individual channels then concatenate to form a new set of spatial filters 
with lighter computations. This method indicates the contrast in the extraction process of Xception 
with VGG16, as it convolves all color channels at the same time, with a larger kernel size [22]. 

 

Fig. 2. Xception Block  
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2.3. ResNet V2 

Previous works stated that stacking more layers on the network can increase effectiveness. However, 
He et al. [24] indicated that a deeper stack of layers could saturate the model accuracy over time. Training 
deeper models can lead gradients to vanish or explode, resulting in lower accuracy rates. The development 
of residual blocks solved the problem of deeper models using a skip or shortcut connection. ResNetV2, 
a later version of the original ResNetV1, proposed the use of identity mappings as shortcuts. With this, 
the V2 method now propagates a signal through the skip connections to earlier blocks in the network, 
unlike V1. Fig. 3 illustrates the re-arrangement of the following layers of the original ResNet V1 block 
compared to the V2 [25][26]. 

 

Fig. 3. ResNet V1 and V2 Blocks 

2.4. Data Preparation and Specifications 

In this work, we considered three major leaf diseases of Barako: Coffee Leaf Rust (CLR), Cercospora 
Leaf Spots (CLS), and Sooty Molds (SM).We also included images of Healthy Leaves (HL) to prevent 
any false diagnosis from the rest. The collected samples came from a local coffee farm, taken in a 
controlled environment using a smartphone with a shooting resolution of 3247x3247 pixels. Together 
with the presence of proper lighting and setup, preprocessing became less challenging. According to 
some works, poorly captured images caused by insufficient light, blurriness, and other forms of noise 
could generate lower classification performance [27]-[29]. Hence, we guaranteed to avoid any occurrence 
of shadow, background noise, and loss of pixel value that may affect the learning and classification process 
as much as possible.  

In Fig. 4, we present our samples captured with poor (a) and improved (b) lighting. In Fig.4(a), the 
immense presence of shadows cast over the subject due to poor lighting conditions. With the poorly 
captured image, we decided to discard it from our training sample to prevent noisy data inclusions. 
Instead, we decided to retake another with additional lighting to reduce the chances of reproducing 
shadows in (b). Also, to further improve the quality of our samples, we removed the background of each 
sample to avoid unnecessary particles, shadows, or any irrelevant features that the model might pick up 
during training shown in (c). 

 

Fig. 4. Image Samples with Poor lighting (a), Good lighting (b), and No Background (c) 
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Likewise, an appropriate label for each image is necessary for the experiment. The leaves collected 
reached up to 4,667 and were annotated appropriately by an identified specialist, as presented in Table 
1. Improper labeling can cause severe problems if not done correctly [30]. This work prevented such 
circumstances from happening. 

For added efficiency, we applied a minimal image processing to resize the input sizes in terms of 
height, width, and depth to generate a standardized dimension of our data entering each model. For 
VGG16 and ResNetV2-152, we used a 224x224x3 while, a 299x299x3 shape dimension for Xception. 
The reason is to utilize the most effective pre-defined sizes given by the authors of each model. However, 
reducing the required maximum dimensions can limit the extraction of better features that can degrade 
the model's effectiveness to classify [31]. On the other hand, enlarging the dimensions would only 
consume higher computational cost with minimal to no improvements, as the authors provided fixed 
measurements that are already optimal for each architecture [21][23][25]. To prevent inconsistency, 
noisy data, expensive training costs, and poor accuracy, we applied these preprocessing methods to 
improve the overall performance of all models [32]. 

Table 1.  Dataset and Specifications 

Class Train Quantity 
Validation 

Quantity 
Sample Image 

Leaf 

Pattern 
Description 

HL 794 136 
  

Bright and green 

without any forms of 

damage or stain 

SM 1683 196 
  

Contains dark molds 

with a bit of curling 

CLR 752 116 

  

Has halo-like 

yellowish to brownish 

spots 

CLS 794 196 

  

Covered with 

brownish dried spots 

Total 4023 644    

2.5. Data Augmentation 

Training a DL model with low quantities of data can result in poor performance [33]. Even with our 
collected number of images, it is still insufficient for a useful DL model to work [34]. To cope up with 
this problem, we decided to augment our data. We used the image data generator instance from the 
Keras API to perform an automatic augmentation of images during the training process [35]. With this, 
passing train samples in each model during training will automatically augment the images without the 
need for laborious manual transformations. 

With the numerous ways of augmentation process, we only considered the standard techniques like 
zoom, shear, rotation, height, and width shift, horizontal and vertical flips, as it can increase learning 
patterns for the model without too much alteration shown in Fig. 5(a). Needless augmentation can cause 
the model to misclassify due to heavy distortion or skew the images too much, as shown in Fig. 5(b). 
Features like colors and location of disease patterns may disappear or become unrecognizable [36]. 
Therefore, we only applied techniques that can increase the training volume while avoiding such 
problems.  

Fig. 5 illustrates the set of good and bad augmented samples. Images in (a), are the only ones we 
considered to apply, while (b) resembles a heavily distorted sample that can cause problems during the 
classification task. Moreover, data augmentation was only performed on the training data to prevent the 
chances of bias and incidence of data leakage [37][38]. 
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(a) (b) 

Fig. 5. Samples with Acceptable (a) and Poor (b) Augmentation 

2.6. Hyper-parameters 

Before the initial training commences, we considered a domain of hyper-parameters. The following 
values in Table 2 originated from a review and stochastic selection of several hyper-parameters from 
previous works [39]. Our indicated combinations of values were tuned to yield the highest possible 
accuracy for all three models.  

Table 2 presents our hyper-parameter settings selected based on a survey study [40]. To train our 
models, we used Stochastic Gradient Descent (SGD) as our optimizer tuned based on momentum, batch 
size, and hidden units according to each model’s characteristics. The slower learning phase of SGD 
improved the model performance to classify with less overfitting than a faster learning optimizer like 
Adam and RMSProp. According to Keskar and Socher [41], with extended training periods, SGD can 
still outperform both RMSProp and Adam. In which, we performed the training of our models in a span 
of 100 epochs. 

Table 2.  Hyper-Parameter Settings 

Model 
Hyper-Parameter Values 

Optimizer LR Momentum Epoch Batch Size Hidden Unit 

Xception SGD 0.1e-3 0 100 64 256 

ResNet V2-152 SGD 0.1e-3 0.5 100 32 256 

VGG16 SGD 0.1e-3 0.9 100 32 128 

 

2.7. Transfer Learning and Fine-Tuning 

The following DCMs selected, Xception, ResNetV2-152, and VGG16, trained using our collected 
4023 train data. However, generating feature parameters from a low volume of data could lead to an 
inferior learning process and accuracy [42]. 

Hence, to achieve better accuracy and a robust set of parameters, we transmitted the ImageNet 
weights from each pre-trained DCM to our models using Transfer Learning. ImageNet improved our 
trained model’s capability to detect images based on edges, blobs, corners, and other essential feature 
parameters needed for image classification. This approach reduced the need for high-end resources 
during training compared to an extensive initialization of the entire weights from scratch [43]. 

However, the parameters of the pre-trained models originally trained to classify 1000 different classes 
like cars, planes, dogs, cats, and other unrelated inclusions using 1000 FC neurons instead of 4. Also, 
the original FC neurons of the pre-trained models from ImageNet did not contain any Barako diseases 
[44]. Having inappropriate FC neurons for the given task can lead to inaccurate or useless results [45].  
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To resolve this problem, we applied Fine-Tuning. With this approach, we crafted a new FC head 
consisting of only 4 FC neurons to classify our 4-classes. The new FC head replaced the previous 1000 
FC Neurons of the pre-trained DCMs used to classify 1000-classes. Through this approach, we managed 
to tailor-fit the models and train with our new FC head containing a suitable number of FC neurons 
that included additional weights initialized only for HL, SM, CLR, and CLS while preserving the 
essential parameters from ImageNet.  

3. Results and Discussions 

To generate our results, we used a machine with an i5 Intel CPU running at 3.50GHz, an NVIDIA 
GeForce GTX 1070 GPU with 8.0GB of VRAM, and a 16.0 GB RAM indicated in Table 3. Our software 
tools involve the use of the Tensorflow framework and Keras API applications on a Jupyter Notebook. 
Table 3 presents the hardware specifications of our machine used for training.  

Table 3.  Machine Specifications 

Component Specification 
CPU I5-4690 @ 3.50GHz 

GPU NVIDIA GTX 1070 with 4095MB Memory 

Memory 16.0GB DDR4-2133 
 

3.1. Training Accuracy and Loss 

During the training period of 100 epochs, we evaluated the models based on the growth of accuracy 
rates and the decrease of loss rates using cross-entropy as a multi-class loss function [46]. The cross-
entropy loss function calculates errors between the actual training data to the model's prediction. A 
broader difference between the train to validation accuracy or loss indicates that the model experienced 
overfitting or underfitting that can affect the classification process. However, the closer the train to 
validation values show a convergence that results in a well-performing model [47][48]. 

 Fig. 6 presents the training results of all three models. ResNetV2-152 (b) started with the lowest 
accuracy of 32% at the first epoch, followed by VGG16 (c) at 51%, and Xception at 60% (a). However, 
after the 100th epoch, VGG16 had the closest convergence in all three, followed by Xception, and 
ResNetV2-152. The plot presented was attained using our selected hyper-parameters. The model fit for 
accuracy was satisfactory without the occurrence of severe overfitting. The train and validation accuracy 
at the last epoch only had a difference of 4% for Xception, 6% for ResNetV2-152, and only 2% for 
VGG16, which indicated the best fit. However, basing only on accuracy rates does not entirely determine 
the effectiveness of a model to generalize. Therefore, we also evaluated each based on its loss per epoch 
to assess overall efficiency. 

   
(a) (b) (c) 

Fig. 6. Training Accuracy per Epoch: Xception (a), ResNetV2-152 (b), VGG16 (c) 

Fig. 7 illustrates the loss graph. All three models had a continuous decrease of loss during training 
until the 100th epoch. Cases of overfitting and underfitting occurred in an earlier portion due to the lack 
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of patterns supported by the validation data. The lack of data remains a limiting factor for developing 
highly efficient plant disease detection models for DCMs [49].  

Results between the difference of train and validation loss at the final epoch ended with 0.10 or 10% 
for Fig. 7(a) Xception, 0.31 or 31% for (b) ResNetV2-152, and 0.07 or 7% for (c) VGG16. To determine 
the effect of these results, we further investigated using a confusion matrix to calculate the overall 
accuracy and the numbers of correctly classified samples of each model. 

   
(a) (b) (c) 

Fig. 7. Training Loss per Epoch: Xception (a), ResNetV2-152 (b), VGG16 (c) 

3.2. Classification Performance 

The diagnosis of Barako leaf diseases can suffer from misclassification due to their intricate patterns 
and similarities. With the confusion matrix, we can visually determine each model’s performance on how 
it classified leaf diseases individually [50]. To validate our results, we used 644 validation samples to 
calculate the over-all classification accuracy. Fig. 8 illustrates the computed results of the three models 
after the training process using a confusion matrix. Each corresponding highlighted block on the 
diagonal trajectory indicates a correct diagnosis. Beyond the mentioned blocks are considered incorrect. 
Moreover, we also determined the percentage of correctly classified samples from each trained model 
with True Positive Rates (TPR). The TPR metric helps us to identify the number of correctly classified 
positive samples infected by diseases apart from the classified negative samples (HL). A model with a 
higher TPR percentage indicates a better classification performance of true positives [50].   

Illustrated in Fig. 8(a), Xception attained 95.50% overall accuracy with its lowest TPR of 89.29% for 
SM, followed by 96.55% for CLR, and 98.50% for CLS while its highest TPR reached 99.26% for HL.    

 

                      (a)    (b)                (c) 

Fig. 8. Confusion Matrix: Xception (a), ResNetV2-152 (b), VGG16 (c) 

ResNetV2-152 achieved an overall score of 90.83% (Fig. 8(b)). It has shown excellent performance 
with a 100% TPR for HL, 97.96% for CLS, and 84.69% for SM. However, it had difficulty in classifying 
CLR, resulting to a TPR of only 78.45%, making it the lowest among all TPRs. VGG16 (Fig. 8(c)) 
attained similar results with ResNetV2-152 in classifying HL at 100%, and its lowest TPR of 91.38% 
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for CLR. Other classes, like SM and CLS, reached TPRs of 96.94% and 98.98%, correspondingly. The 
overall accuracy of (Fig. 8(c)) was 97.20%, making it the dominant model followed by (Fig. 8(a)). 

3.3. Discussions 

In this section, we compared the results of other works that performed similar tasks of identifying 
diseases in coffee plants. It is worth mentioning that we cannot directly compare each study as we had 
different methods and data used. However, there are still comparable aspects in terms of objectives and 
the use of DCMs. 

Table 4 presents the comparison of the top trained models of each work and its highest accuracy 
attained, as each author had multiple models. Our work had an accuracy of 97% in classifying four 
different leaf conditions (HL, SM, CLR, and CLS). Esgario et al. also had a score of 97%, which 
identified four biotic leaf stresses. Another work by Liang et al. focused on the severity of diseases and 
landed with 91%. Lastly, the work of Barbedo had achieved top accuracy of 88%. However, the work 
of Barbedo classified six different kinds of biotic stresses, making it the highest number of classes 
compared to all works presented. 

Table 4.  Comparison of Results from Other Works 

Authors Top Accuracy Attained 
Our Work 97% 

Esgario et al. [15] 97% 

Marcos et al. [14] 95% 
Liang et al. [51] 91% 

Barbedo [16] 88% 

 

The primary contribution of this work mainly lies in the data, collection method, and the processes 
performed. Among all works presented, this work considered the highest number of Coffea Liberica 
compared to others, which mainly used Arabica and Robusta leaves. The collection process included the 
use of proper lighting in a controlled environment added with preprocessing methods like background 
subtraction to remove any inappropriate image noise before training.  

 With the total collected dataset of 4,667, we selected to train and validate the classification 
performance of the newer architectures of DCMs, namely, Xception and ResNet152-V2 using Transfer 
Learning and Fine-Tuning. Unlike the other works that used previous versions of DCMs for their task. 
Added preprocessing and augmentation methods further improved this work to attain significant results 
to classify Barako leaf diseases.  

4. Conclusion 

This research classified Barako leaf diseases using notable recent DCMs to improve the process of 
diagnosis. We collected 4667 Barako leaf images from a local farm separated into a training dataset of 
4023 and a validation set of 644. Each leaf sample is labeled into four classes by an expert with CLR, 
CLS, SM, and HL. To train our models, we applied transfer learning, fine-tuning, preprocessing 
methods, data augmentation, together with our selected hyper-parameters. VGG16, Xception, and 
ResNetV2-152 attained overall accuracies of 97%, 95%, and 91%, respectively. However, to our 
conclusion, the use of limited validation quantity led to heavy oscillations during validation. Nonetheless, 
each model still managed to attain significantly low error rates at the end of 100 epochs. Classification 
results based on TPR indicated that Xception could classify CLR samples better than the rest, while 
VGG16 tops with SM and CLS. At the same time, ResNetV2-152 had difficulty with CLR and attained 
the lowest performance in terms of TPR and overall accuracy. This work concludes that DCMs can 
potentially improve the diagnosis of Barako leaf diseases to help local farmers. Furthermore, this research 
can still scale to a more viable solution. We identified three paths for future researchers that may have 
an interest. First, to increase the data and patterns, which can highly contribute to improving 
classification performance. Second, to develop a specialized model that can identify unlearned patterns 
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beyond the given diseases without or low bias and variance. Last, we recommend having a practical 
application of the collected data and models for real-time use to diagnose and perform treatment even 
without farmers’ physical presence. 
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