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1. Introduction 
A stroke occurs when the brain experiences disturbances such as blood supply. One in six people in 

the world will experience a stroke for life. Stroke can cause permanent damage, including partial paralysis 

and impaired speech, comprehension, and memory [1]. The situation of patients who have experienced 

a stroke is usually called post-stroke. In post-stroke patients, rehabilitation is needed to restore the 

function of body parts or minimize disability caused by stroke. Rehabilitation provided includes physical, 

cognitive, and mental, accompanying medication. However, monitoring and evaluation need to be done 

to determine the next treatment step.   
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 Stroke often causes disability, so patients need rehabilitation for recovery.  

Therefore, it is necessary to measure its effectiveness. An 

Electroencephalogram (EEG) can capture the improvement of activity in 

the brain in stroke rehabilitation. Therefore, the focus is on the 

identification of several post-rehabilitation conditions. This paper proposed 

identifying post-stroke EEG signals using Recurrent Neural Networks 

(RNN) to process sequential data.  Memory control in the use of RNN 

adopted Long Short-Term Memory.  Identification was provided out on 

two classes based on patient condition, particularly "No Stroke" and 

"Stroke".  EEG signals are filtered using Wavelet to get the waves that 

characterize a stroke. The four waves and the average amplitude are features 

of the identification model. The experiment also varied the weight 

correction, i.e., Adaptive Moment Optimization (Adam) and Stochastic 

Gradient Descent (SGD).  This research showed the highest accuracy using 

Wavelet without amplitude features of 94.80% for new data with Adam 

optimization model. Meanwhile, the feature configuration tested effect 

shows that the use of the amplitude feature slightly reduces the accuracy to 

91.38%. The results also show that the effect of the optimization model, 

namely Adam has a higher accuracy of 94.8% compared to SGD, only 

74.14%. The number of hidden layers showed that three hidden layers 

could slightly increase the accuracy from 93.10% to 94.8%. Therefore, 

wavelets as extraction are more significant than other configurations, which 

slightly differ in performance. Adam's model achieved convergence in 

earlier times, but the speed of each iteration is slower than the SGD model. 

Experiments also showed that the optimization model, number of epochs, 

configuration, and duration of the EEG signal provide the best accuracy 

settings.   
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One method for observing the general state of post-stroke patients is the National Institutes of 

Health Stroke Scale (NIHSS). NIHSS has 11 assessment indicators. There are vigilance, personal data, 

instructions to open and close eyes, moving the eyeball according to directions, focus on seeing an object, 

moving hands, moving legs, motor examination, testing body sensors such as needle insertion, testing 

ability language and imagination, the ability to read and repeat pronunciation, and the ability of the five 

senses [2]. NIHSS provides five categories of post-stroke patients based on the assessment of 11 

indicators, particularly "No Stroke" for recovery, "Minor Stroke" for mild stroke conditions, "Moderate 

Stroke" for middle stroke conditions, "Moderate to Severe Stroke" concerning stroke conditions 

intermediate to heavy, and "Severe Stroke" for severe stroke conditions. Previous studies carried out 

electroencephalogram (EEG) signal analysis to calculate the NIHSS method [3]. 

EEG can be used in post-stroke patients to monitor their progress conditions. EEG signals can be 

obtained through the scalp by capturing the electrical potential of the brain. EEG signals have complexity 

in processing considering the low amplitude so that it is undoubtedly buried in noise and has an 

uncertain shape. However, the advantages of EEG are that it is cheap in operation and can be applied in 

real-time. The EEG signal that the Neurologist reads related to post-stroke patients is by observing the 

rhythm, changes in amplitude, and wave density on the EEG signal. In previous studies using EEG 

signals to detect emotions [4], detect epilepsy [5], hand rehabilitation in post-stroke patients with BCI 

display [6], and extraction significant variables for the recovery of post-stroke EEG signals [7]. 

EEG signal recording in the time-domain. Meanwhile, stroke analysis needs a rhythm pattern called 

Alpha, Beta, Theta, and Delta [8]. One method that is fitting for non-stationary signals like EEG signals 

to frequency extraction is Wavelet. This method has been used in the emotional classification of stroke 

patients [9], for classification in epilepsy patients [10], and diagnosis of depression through EEG signals 

[11]. 

Recurrent Neural Networks (RNN) is a machine learning method that can overcome memory 

optimization and overfitting limitations. RNN can connect sequential data. Besides RNN, the method 

used to process time-series data is fuzzy relations that can process linguistic values  [12]. RNN is a 

learning model that continually preserves past information in sequential data, which is analogous to 

when the human brain makes decisions by remembering what has been learned [13]. Past studies used 

RNN for emotion recognition [13], motor imagery [14], and neuropsychological identification [15]. 

Other studies used Deep Neural Network to study motor imagery patterns in stroke patients [16]. 

This study identified post-stroke patients based on EEG signals using RNN and LSTM.  

Identification was provided out in two classes, namely "No Stroke" and "Stroke". Data set were recorded 

at Al-Islam Bandung Hospital from 25 patients with a post-stroke history with research ethics. As a 

comparison, 25 no-stroke people were recorded. Data used from previous studies and testing significant 

features of EEG signals [7]. Wavelet extraction is accomplished to separate each element, mainly Alpha, 

Mu, Theta, Beta, and Delta waves. The results of the extraction are processed using RNN and LSTM. 

2. Method 
This research is using the phase of Wavelet extraction and Recurrent Neural Networks for 

identification.   

2.1. Wavelet Extraction 
The wavelet method is generally used as a pre-processing method for signal processing [17], noise 

reduction [18][19], image processing [20], texture [21] which gives excellent results [22]. Wavelet 

consists of the decomposition that has a frequency component and reconstruction to the time domain. 

Therefore, EEG signals that are non-stationary can be analyzed using Wavelets. Decomposition has two 

processes that are convolution and down-sampling. Discrete Wavelet transformations of signal x (n) are 

given by decomposition in (1).  

        C(σ, τ) = ∑ x(n)ψσ,τ(n)n   (1) 
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And reconstruction as (2). 

       x̂ (n) =  ∑ ∑ C(σ, τ)ψσ,τ(n)τσ             (2) 

 

In (3), consist of σ and  τ  are a scale and shift factor which is basic Wavelet function. 

        𝜓𝜓𝜎𝜎,𝜏𝜏(𝑛𝑛) =  1
�|𝜎𝜎|

𝜓𝜓�𝑛𝑛− 𝜏𝜏
𝜎𝜎
�  (3) 

Each decomposition step produces an approximation signal as half a low-frequency band and details 

like a high-frequency filter. The approximation or low coefficient and high detail coefficient are obtained 

using (4) and (5), where f (n) and g (n) are the low pass and high pass filters, respectively.  Various forms 

of Wavelet functions, including Symlet2 [4], contain four coefficients. Signal decomposition several steps 

to produce Alpha, Beta, Mu, Delta, and Theta waves. 

        𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦[𝑘𝑘] = ∑ 𝑥𝑥[𝑛𝑛].𝑔𝑔[2𝑘𝑘 − 𝑛𝑛]𝑛𝑛   (4) 

        𝑦𝑦ℎ𝑖𝑖𝑖𝑖ℎ[𝑘𝑘] =  ∑ 𝑥𝑥[𝑛𝑛].ℎ[2𝑘𝑘 − 𝑛𝑛]𝑛𝑛   (5) 

2.2. Recurrent Neural Networks and Long Short-Term Memory 
Deep learning is a branch of machine learning inspired by a collection of neurons like brain neurons. 

Several methods used Convolutional Neural Networks (CNN) for identification images [23]. CNN can 

also be used for time-series data types with a one-dimensional form [24]. The advantages of this method 

are to provide faster computing and provide more freedom in previous extractions [25]. Meanwhile, 

other methods for signal processing, such as EEG, can use the Recurrent Neural Networks (RNN) 

method [26]. RNN helps the connection of sequential data.  

One of the widely used RNN configurations is Long Short-Term Memory (LSTM) [27][28]. 

However, there are other sequential data information management methods such as Backpropagation 

Through Time (BPTT) [13], Gated Recurrent Units (GRU), Conventional Gated Recurrent Neural 

Networks (C-RNNs), Inception Convolutional Gated Recurrent Neural Networks (IC-RNNs), and 

Convolutional Densely Connected Gated Recurrent Neural Network (C-DRNN) [15]. Although RNN 

has the advantage of facilitating the connection of each signal, it is necessary to be careful when using 

pre-processing signal extraction methods. Also, it requires more computing time than using 1D CNN. 

This study uses RNN with LSTM architecture to process long data sequences [28]. LSTM is used 

to overcome the amount of data processed by the gate mechanism. LSTM architecture can be seen in 

Fig. 1, starting with xo as input processed in hidden LSTM produces ho. 

 
Fig. 1.  LSTM architecture 

X0 LSTM h0

X1 LSTM h1

Xt LSTM ht
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Inside the hidden layer, LSTM has a standard unit called a memory block. This concept is another 

way to calculate the hidden state. A memory block called a cell can determine what to store in its memory 

storage temporarily [29]. LSTM memory input is taken from the initial state (ht-1) and the current input 

(xt). A set of cells whether to decide to be stored or deleted in memory. LSTM has three gates: forget 

gate, input gate, and output gate by combining the previous state, current memory, and output shown 

in Fig. 2. 

 
Fig. 2.  LSTM cell of Recurrent Neural Networks architecture 

The forget gate is the first gate (f) using the sigmoid layer to learn which data will be eliminated 

from the cell, as shown in (6). It used ReLU for the activation function with (7). 

       𝑓𝑓𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑓𝑓. [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)   (6) 

       𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) =  𝑚𝑚𝑚𝑚𝑚𝑚 (0, 𝑥𝑥)  (7) 

The second is the input gate (i) so that the sigmoid layer (σ) will be updated, with tanh of and 

formulated as an updated vector. It can be seen at (8) and (9), where xt is input for each current step. 

        𝑖𝑖𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑓𝑓 • [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)   (8) 

        𝐶̃𝐶𝑡𝑡 =  tanh(𝑊𝑊𝑐𝑐 • [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐)  (9) 

Then cell from (6), (8), and (9) will be updated using (10) where 𝐶𝐶𝑡𝑡 is the internal memory and 𝐶𝐶𝑡𝑡−1 

of the previous memory. 

        𝐶𝐶𝑡𝑡 =  𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶̃𝐶𝑡𝑡  (10) 

Finally, at the output gate (o), it will be calculated from the cell renewal and the sigmoid layer, which 

determines which cells will be received as the final result, such as (11) and (12). 

       𝑜𝑜𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑜𝑜 • [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)  (11) 

       ℎ𝑡𝑡 =  𝑜𝑜𝑡𝑡 ∗  tanh(𝐶𝐶𝑡𝑡)  (12) 

2.3. Weight Correction 
There are various ways to improve the weight of each training iteration. Some methods optimize to 

reach convergence and produce errors quickly or are marked with small cross-entropy values. This 
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method uses some ways, such as estimating the value of the subsequent iteration output, using not all 

output neurons, and gradually learning rate. This method is adapted to the Gradient Descent method: 

the Adaptive Moment Optimization (Adam) and Stochastic Gradient Descent (SGD) models. 

• Stochastic Gradients Descent; Stochastic Gradient Descent (SGD) is a derivative learning method 

and the management of gradient values using a random sample in one iteration by taking one or 

more training data elements. In contrast to Gradient Descent which seeks local optimum using all 

training data because it can waste time. SGD correction uses (13). Variable θ is the weight function; 

𝜂𝜂 is the first learning rate, x (i) and y (i) parameter labels on the training data. In the comparison of 

traditional gradient descent, SGD uses minimum memory and reaches convergent values faster. 

However, updating the weight with a high variant of SGD is often carried out to make many 

fluctuations [30]. 

                   𝜃𝜃 =  𝜃𝜃 − 𝜂𝜂 .∇𝜃𝜃 𝐽𝐽(𝜃𝜃; 𝑥𝑥𝑖𝑖; 𝑥𝑥𝑖𝑖)          (13) 

• Adaptive Moment Optimization; Adam is a learning method that makes predictions by calculating 

the level of individual learning for each parameter which can adaptively minimize the possibility of 

error. Adam training converges faster than SGD [31] because it uses the estimation of the initial-

moment gradient and 𝑣𝑣𝑡𝑡 as an exponential slope as like (14). The second moment, 𝑠𝑠𝑡𝑡 as the average 

of the quadratic exponents in (15) adapts the learning rate for every weight. The learning level is 

multiplied using the mean of the gradient. Then the result is calculated (16) and the weight update 

in (17). 

           𝑣𝑣𝑡𝑡 = 𝛽𝛽1 ∗ 𝑣𝑣𝑡𝑡−1 − (1 − 𝛽𝛽1) ∗ 𝑔𝑔𝑡𝑡          (14) 

           𝑠𝑠𝑡𝑡 = 𝛽𝛽2 ∗ 𝑠𝑠𝑡𝑡−1 − (1 − 𝛽𝛽2) ∗ 𝑔𝑔𝑡𝑡2          (15) 

                   ∆𝜔𝜔𝑡𝑡 = −ꞃ 𝑣𝑣𝑡𝑡
�𝑠𝑠𝑡𝑡+𝜖𝜖

∗ 𝑔𝑔𝑡𝑡           (16) 

           𝜔𝜔𝑡𝑡+1 = 𝜔𝜔𝑡𝑡 + ∆𝜔𝜔𝑡𝑡          (17) 

2.4. Identification Model 
At this stage, post-stroke patient EGG signal processing will be carried out for identification using 

the previously conducted Wavelet and RNN learning. As shown in Fig. 3, a computational model 

provides the output of stroke levels, namely "No Stroke" and "Stroke". 

 
Fig. 3.  Identification model of the post-stroke patient. 
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2.4.1. Data Acquisition 
This study used EEG signals from 25 post-stroke patients at Al-Islam Hospital Bandung and 25 

people without stroke as a comparison. Data on post-stroke patients were recorded after obtaining 

research ethics permit used in previous studies [7]. Classes used are 2, namely "No Stroke" and "Stroke". 

EEG signals are recorded from 14 channels consisting of AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, 

FC6, F4, F8 with the Modified Combinatorial Nomenclature (MCN) system as shown in Fig. 4.  

 
Fig. 4.  Electrode configuration using the MCN system. 

2.4.2. Wavelet Extraction 
The EEG signal is decomposed in six steps using (4) and (5) with a sampling frequency of 128 Hz to 

obtain a wave, as shown in Fig. 5. 

 

Fig. 5.  Wavelet decomposition  

Delta waves are obtained by six-step decomposition and reduce from 1,280 to 60 data, while Theta 

waves experienced a six-step decomposition process and reduced from 1,280 data to 80 data. In Alfa and 

Mu waves, the decomposition process is done in six steps and reduces 1,280 data to 120. However, Mu 

waves are just obtained from FC5 and FC6 channels. Beta waves experience six stages of decomposition 

and reduce from 1,280 data to 380 data. 

Meanwhile, the amplitude change variable is taken every 10 seconds and segmented every 16 points 

to take the average value to produce 80 data from 1,280 data. The result of Wavelet extraction will be a 

feature vector for the RNN method, as shown in Table 1. 
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2.4.3. Recurrent Neural Networks 
The identification used RNN with the LSTM architecture. The model uses six types of features: 

Alpha, Mu, Beta, Theta, Delta, and changes in amplitude. Input vectors can be seen in Table 1, which 

starts from each feature taken in all channels beginning from x1 – x10,080 for inputs that enter the RNN. 

Table 1.  Feature of Recurrent Neural Networks 

Feature Vector Point number each channel Channel Point number 
Delta Wave 60 14 840 

Theta Wave 80 14 1,120 

Alpha Wave 120 12 1,440 

Mu Wave 120 2 240 

Beta Wave 380 14 5,320 

Amplitude 80 14 1,120 

Total 10,080 

3. Results and Discussion 
This experiment used EEG signal data as many as 50 datasets of 25 post-stroke patients and 25 non-

stroke patients. The data was used 80% for learning with RNN and 20% for identification. The research 

began with Wavelet extraction to obtain frequency-based waves such as Alpha, Mu, Beta, Theta, and 

Delta waves and changes in amplitude. Then the extraction results are input the RNN model for 

identification.  

3.1. Wavelet Extraction  
The frequency recorded by the EEG signal is 0-64 Hz, while the extraction stage processes 0.5-30 

Hz. The first stage of the experiment is to extract Wavelet using the Symlet2 coefficient, as shown in 

Fig. 6(a). The results of Wavelet extraction, as shown in Fig. 6(b), will be used as input vectors for input 

into the RNN method. 

(a) 

 
 

(b) 

  

Fig. 6.  Original EEG signal (a) and Extracted EEG signal (b) 
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3.2. Testing the Model Optimization, Wavelet Extraction, and Amplitude Feature  
This experiment used two optimization models, remarkably Adam and SGD models. Both models 

improved weight, reduce error values, minimize output deviations, and increase speed during learning. 

Adam's model has fast convergence properties but is just not stable due to swift error reduction. 

Meanwhile, the SGD model samples data randomly and uses only a single sample for each accuracy. In 

testing using amplitude and wavelet extraction, the Adam optimization model obtained training data 

accuracy of 99.61% and new data of 91.38%. Meanwhile, the SGD optimization model got the training 

data accuracy of 67.57%, and the new data was 62.07%. It shows in Fig. 7, after 100 epochs. Compared 

to the Adam model, the small accuracy of SGD shows that the loss value is 0.6502 for the training data 

and 0.6788 for the new data. At the same time, the Adam model provides a smaller loss of 0.5090, as 

shown in Fig. 8. Therefore, this test shows if the SGD model has become saturated, so it does not help 

initialize weights that affect accuracy.  

 

Fig. 7.  Accuracy with amplitude feature  

 
Fig. 8.  Losses with amplitude feature 

Meanwhile, the test without amplitude yields an accuracy of 93% for the new data with the Adam 

optimization model. Meanwhile, the SGD optimization model produces 70.08% for the training data 

and 58.62% for the new data. This result is shown in Fig. 9(a). Compared with using the amplitude 

feature, accuracy without using the amplitude feature is not better. However, the exactness is higher 

with the Adam model, no more than 3%, so there are still random factors. While the SGD model's 

correctness, using the amplitude feature is better than 3%, as shown in Fig. 9(a). While the loss value 

from using the amplitude feature is relatively the same, both were using the Adam or SGD model, as in 

Fig. 9(c). 
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(a)  

Accuracy without 

amplitude feature 

(10) 

 

 

(b) 

Accuracy of 

without Wavelet 

filter (12) 

 

 

(c) 

Loss without 

amplitude feature 

(11) 

 

 

(d) 

Loss without 

Wavelet extraction 

(13) 

 

Fig. 9.  Accuracy and loss without amplitude feature and wavelet extraction 

This study tested the performance of Wavelet extraction. It shows that the accuracy of the Adam 

model using Wavelet increased from 89.66% to 93.10%. While the SGD optimization model produces 

accuracy, it grew from 62.07% to 74.11% for the new data, as shown in Fig. 9(b). From previous studies, 

the correctness of the system using Wavelet extraction can be improved. The opposite phenomenon in 

the use of SGD is likely, too large a range of random numbers in training, so it tends to be unstable. 

This result is shown by the value of losses from a system without Wavelet extractions extensive, as in 

Fig. 9(d). 

 The RNN model, which was tested with two models with 100 epoch iterations, had significant 

differences. The Adam optimization model used amplitude or does not have the accuracy of training 
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data ranges from 99% - 100%, and new data ranges from 89% to 93%. Meanwhile, the SGD 

optimization model gave accuracy ranges from 67% - 90% of training data and 58% - 74% of new data. 

The computing time between the two optimizations with 100 epochs and training was carried out using 

the GPU with RAM 6 GB. Adam can see that convergence in the epoch is faster, but the speed of each 

epoch is slower than SGD. A comparison of all test results can be seen in Table 2 with Adam and SGD 

optimization and amplitude features without amplitude features. 

Table 2.  Accuracy of various configurations using RNN and LSTM 

Model Method and Feature 

Training Data New Data Computational time 
(second) Accuracy 

(%) 

Loss 

Accuracy 

(%) 

Loss 

Adam 

Wavelet with 

amplitude&wavelet 

99.61 0.010600 91.38 0.5090 74.32 

Wavelet without amplitude, 

with wavelet 

100.00 0.000009 93.10 0.5187 34.54 

Without Wavelet 100.00 0.000070 89.66 0.7551 126.00 

SGD 

Wavelet with 

amplitude&wavelet 

67.57 0.650200 62.07 0.6788 49.75 

Wavelet without amplitude, 

with wavelet 

70.08 0.654700 58.62 0.6749 24.00 

Without Wavelet 90.54 0.447500 74.14 0.5680 134.40 

3.3. Testing the Number of Epochs 
This study used the number of iterations of 500 epochs with the SGD optimization model. This 

experiment considers that in the 100 epoch, the SGD model provides a graph of increasing accuracy of 

new data in Table 3. Accuracy for training data addition of epochs does not experience increased accuracy. 

At the same time, the Adam model has converged.  

Table 3.  SGD model Wavelet without amplitude. 

Epoch 

Training Data New Data 
Accuracy (%) Loss Accuracy (%) Loss 

100 66.09 0.6814 62.07 0.6832 

200 67.61 0.6602 63.79 0.6683 

300 73.91 0.6134 70.69 0.6384 

400 80.00 0.5075 74.14 0.5802 

500 91.80 0.3316 81.03 0.4699 

 

Fig. 10 shows the best accuracy of training data by 91.80%, and the accuracy of new data is 81.03%. 

In comparison, losses can be seen in Fig. 11, of 0.3316 for the training data and 0.4699 for the new data. 

 

Fig. 10. Accuracy of 500 epoch using SGD model Wavelet without amplitude 
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Fig. 11. Losses of 500 epoch using SGD model Wavelet without amplitude 

3.4. Amount of Hidden Layers 
This study was initially using two hidden layers from the LSTM method. From the previous test, 

the best accuracy was obtained using wavelet extraction and without amplitude. Then the test was 

conducted to determine the effect of the hidden layer in Table 4. The best accuracy result was 94.80%, 

with three hidden layers. 

Table 4.  Amount of Hidden Layers 

Hidden Layers Accuracy of New Data (%) 
Two hidden layers 93.10 

Three hidden layers 94.80 

Four hidden layers 89.60 

Five hidden layers 90.50 

3.5. Disscussion 
Identification of post-stroke patients based on EEG signals was carried out using Wavelet and RNN. 

The features that provide the best accuracy are Alpha, Beta, Theta, and Delta waves at 93.1%. The RNN 

and LSTM methods have provided better accuracy than previous studies using Kohonen Self Organizing, 

only 74% [7].  

The connection between sequential features is very appropriate for EEG signals, which are the time 

domain, thus providing better accuracy. However, the addition of the amplitude features of post-stroke 

patients characteristic of the EEG signal is less precise than the use of RNN. This result considers the 

feature sequence to have the same type, namely the wavelet extraction waveform. So the addition of 

features of different types can interfere with connectivity that decreases accuracy. Unlike previous studies, 

amplitude features and symmetric wave differences between channels accompanying wave features 

provide the best accuracy. 

The study also found that the addition of hidden layers does not always increase accuracy, so that 

obtained three hidden layers give the best accuracy of 94.8%. Therefore, the addition of hidden layers 

only aggravates the work of RNN in learning but does not improve accuracy. Therefore, the addition of 

hidden layers only aggravates the work of RNN in learning but does not improve accuracy.  This study 

can improve the classification of EEG signals with motor imagery features using Wavelet and LSTM for 

post-stroke patients, which provides an accuracy of 93.3%. However, this study uses nine hidden layers 

[14]. 

Judging from the optimization model for weight improvement, the Adam model gives better accuracy 

than the SGD model. However, SGD models are more susceptible to adding features of different types. 

So that EEG signals without Wavelet extraction and amplitude features provided 74.1% of accuracy. 

Besides, the SGD model requires more iterations to achieve convergence, but each iteration requires a 

shorter time than the Adam model. Therefore, in general, the SGD model learning computing time is 

shorter. 
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4. Conclusion 
This study shows that EEG signals using Wavelet and RNN can be used to identify post-stroke 

patients, which gives accuracy up to 94.8%. The model was developed on EEG signals from 50 people 

consisting of 25 people post-stroke patients and 25 non-stroke patients. EEG signal data is segmented 

every 10 seconds from 120 seconds of recording. The sequential data of the EEG signal is matched using 

RNN and LSTM to provide excellent accuracy. However, this method is slightly vulnerable to variations 

in feature types, so adding amplitude features does not offer better correctness. Although, this feature 

has a very significant effect on the SGD model compared to the Adam model. The configuration of 

RNN architecture in the identification of post-stroke patients using EEG signals provides that it is 

necessary to pay attention. It is such the number of hidden layers, and especially the weight optimization 

model. The results show that the Adam model provides better accuracy and is more robotic by adding 

different features than the SGD model. However, SGD's computation time is faster than Adam's, 

although it requires a longer iteration. 
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