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1. Introduction 
Treatments for SARS-CoV-2 have caused millions of deaths since the end of 2019, and this pandemic 

is yet to be invented [1]. Therefore, authoritative vaccines are needed to control the outbreak. 

Unfortunately, even though mRNA vaccines have shown a promising effect, it has a drawback of rapid 

degradation. 
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 Coronavirus causes a global pandemic that has adversely affected public 

health, the economy, including every life aspect. To manage the spread, 

innumerable measurements are gathered. Administering vaccines is 

considered to be among the precautionary steps under the blueprint. 

Among all vaccines, the messenger ribonucleic acid (mRNA) vaccines 

provide notable effectiveness with minimal side effects. However, it is easily 

degraded and limits its application. Therefore, considering the cruciality of 

predicting the degradation rate of the mRNA vaccine, this prediction study 

is proposed. In addition, this study compared the hybridizing sequence of 

the hybrid model to identify its influence on prediction performance. Five 

models are created for exploration and prediction on the COVID-19 

mRNA vaccine dataset provided by Stanford University and made accessible 

on the Kaggle community platform employing the two deep learning 

algorithms, Long Short-Term Memory (LSTM) as well as Gated 

Recurrent Unit (GRU). The Mean Columnwise Root Mean Square Error 

(MCRMSE) performance metric was utilized to assess each model’s 

performance. Results demonstrated that both GRU and LSTM are 

befitting for predicting the degradation rate of COVID-19 mRNA vaccines. 

Moreover, performance improvement could be achieved by performing the 

hybridization approach. Among Hybrid_1, Hybrid_2, and Hybrid_3, when 

trained with Set_1 augmented data, Hybrid_3 with the lowest training 

error (0.1257) and validation error (0.1324) surpassed the other two 

models; the same for model training with Set_2 augmented data, scoring 

0.0164 and 0.0175 MCRMSE for training error and validation error, 

respectively. The variance in results obtained by hybrid models from 

experimenting claimed hybridizing sequence of algorithms in hybrid 

modeling should be a concerned.  

 

This is an open access article under the CC–BY-SA license. 

    

 

 

Keywords 
mRNA vaccine 
Hybridizing sequence 
Degradation 
Label encoding 
Deep learning algorithms 

 

https://doi.org/10.26555/ijain.v8i3.950
http://ijain.org/index.php/IJAIN/index
mailto:ijain@uad.ac.id?subject=%5BIJAIN%5D
mailto:azamimi@unimap.edu.my
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.26555/ijain.v8i3.950&domain=pdf


405 International Journal of Advances in Intelligent Informatics   ISSN 2442-6571 

 Vol. 8, No. 3, November 2022, pp. 404-416 

 

 

 Ing et al. (Exploration of hybrid deep learning algorithms for covid-19 mRNA vaccine degradation prediction system) 

Wadhwa et al. [2] showed that degradation has significantly reduced the mRNA yields during the 

in-vitro transcription. Note that the half-life of mRNA vaccines might also be 900 days in cold chain 

conditions, having a rate of more than 2% degradation every 30 days [2]. Moreover, it is important to 

note that the half-life of vaccines can be drastically shortened to 5 and 10 days, accordingly, having a 

temperature digression to about 37°C or with a 2 unit drift with respect to the pKa value [2]. The in-

vitro transcription of the vaccines can be conducted at a temperature of 37°C with magnesium ions 

(Mg2+), which subsequently reduces the half-life to no longer than 2 hours [2]. The outcome, in which 

the mRNA vaccine is unstable since degradation still happens throughout the transcription process, is 

similar despite lowering the Mg2+ temperature, or concentration, pH value to reduce the hydrolysis [2].  

Besides, Abbasi [3] claimed that this restriction might be circumvented with a second and perhaps 

booster dose regimen of the vaccine. However, the degradation concern must not be disregarded since a 

vaccine’s effectiveness cannot be replaced or recovered after it has been compromised. Stabilizing mRNA-

based vaccines has always been a great challenge. Looking for an optimum solution is like facing an 

enigma with no end and has caused headaches to vaccine scientists and researchers for decades. 

Parenthetically, vaccines that become unstable have induced countless losses of lives [4], especially during 

a pandemic. This study is crucial to address the safety concerns to ensure no adverse impacts on the 

potency of a vaccine. Vaccine functionality and characteristics are easily affected by a minor degradation 

[5], and its degradation rate is easily altered by both intrinsic and extrinsic factors. 

It is important to research the degradation of the mRNA vaccine. However, few studies were 

performed on predicting mRNA or vaccine degradation, especially concerning COVID-19 mRNA 

vaccines. By the end of 2020, research by Singhal on the topic of COVID-19 mRNA vaccine degradation 

prediction utilizing Graph Convolution Network (GCN), Gated Recurrent Unit (GRU), as well as Long-

Short-Term-Memory Cells (LSTM) algorithms assessed with root mean square error (RMSE) revealed 

that GCN-based model (0.249) is the finest for reactivity prediction. Meanwhile, the GRU-based model 

with an accuracy of 76% is marked as the premium predictor when considering all the target variables 

[6]. 

Imran et al. used a regularized LSTM model to forecast the degradation rate with respect to the 

mRNA vaccine, and it showed better performance than tree-based algorithms. Different activation 

functions, including linear, hyperbolic tangent (Tanh) as well as a rectified linear unit (ReLU), were 

taken into consideration for each layer of the model during model development to converge the Mean 

Columnwise Root Mean Square Error (MCRMSE) losses [7]. GRU-related models were also proposed 

and considered [8] [9] [10]. A modified GRU with a multi-head attention mechanism was developed 

by Wang et al. to train the model by having 3 GCNs to deal with three adjacency matrices, i.e., base-

pairing probability (BPP), structure adjacency and distance matrices, respectively. The model 

performance is measured with MCRMSE, achieving a passable score of 0.3489 [8]. 

Muneer et al. and Qaid et al. used hybrid models to predict the degradation rate [9] [10], and in 

tandem with Convolutional Neural Network (CNN), the authors came up with GCN_GRU and 

GCN_CNN models [9]. Between these models, GCN_GRU pre-trained embedding model showed the 

best performance with a score of 0.938 for the Area Under the Curve (AUC) performance metric, which 

indicated its suitability in the base-wise reactivity prediction studies compared to CNN. On the other 

hand, the three models proposed by Qaid et al. include LSTM, GRU, and hybrid LSTM_GRU. 

Different from other research, the authors suggested two different encoding methods, i.e., the base (0 – 

13) encoding method and the codon (1 – 434) method of encoding. Results presented that LSTM 

trained with the codon encoding method is the best model among all the proposed models [10]. 

However, the authors suggested that the base encoding method is much more preferable compared to 

the codon encoding method since it has a lesser tendency to overfitting. 

Other than deep learning algorithms, Ing et al. proposed three machine learning algorithms (Random 

Forest, Light Gradient Boosting Machine, as well as Linear Regression) with respect to this prediction 

study [11] [12], showing that both theories of machine learning and deep learning are comfortable with 

this study. Referring to all the past studies reviewed, it is found that GRU and LSTM are the two widely 
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used algorithms in this field of research. Besides, it deduced that hybridizing algorithms to form a hybrid 

model for prediction is conducive to reducing the error. However, it is noticed that researchers failed to 

demonstrate the results of hybrid models concerning a different sequence of hybridization. Hence, this 

paper presents the prediction results of hybrid models considering the hybridizing sequence with GRU 

and LSTM algorithms, utilizing the concept proposed by Qaid et al. in [10]. 

2. Method 
Besides developing reliable models that have the ability to forecast the rate of the COVID-19 mRNA 

vaccine degradation, this paper also focuses on discovering the relationship between predicted results 

with the hybridizing sequence of algorithms in hybrid modeling. To ensure comparability, this research 

utilized the same datasets and performed the same concept and theory as executed by Qaid et al., except 

excluding the codon encoding method. Since researchers’ main objective is to develop degradation 

prediction models with absolute accuracy with low error rates, only the training and bpps datasets are 

extracted from the Kaggle community and Eterna platforms. This was bolstered by Stanford University 

[13] to perform a supervised-based study instead of a semi-supervised. Several features in the forms of 

aggregate functions (Exponential Weighted Average, Maximum, Normalize, Average Position Value, 

and Summation) were engineered from the BPPs dataset to represent the numerical features. The pre-

processing step handles eliminating noises and data organization for training and evaluating purposes. 

Completion of the pre-processing data stage will generate well-encoded, clean data that is ready to be 

fed into models, followed by the training of 5 models with the trained dataset for model development. 

Model performance was evaluated on the validation set with MCRMSE. Fig. 1 illustrates the method 

workflow. 

 

 

Fig. 1.  The Flow Chart of the Methodology 
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2.1. Dataset 
The empirical data obtained from Kaggle sourced by Stanford University [14] for this research gave 

rise to a regression study, allowing the prediction of the degradation rate of the mRNA vaccine to be 

studied. Together with the augmented dataset and at the same time having the training dataset 

contributing 2400 samples to the total amounts, two sets of data, one with 4800 samples and another 

with 21600 samples, are gained. 

2.1.1. Training Dataset 

The training dataset extracted comprises 2400 samples with 19 fields, inclusive of the 'sequence', 
'structure', 'predicted_loop_type', 'SN_filter', 'signal_to_noise', 'seq_length', 'seq_scored', 'reactivity_error', 
'deg_error_pH10', 'deg_error_Mg_pH10', 'deg_error_50C', 'deg_error_Mg_50C', 'reactivity', 'deg_50C’, 

'deg_pH10', 'deg_Mg_pH10', 'deg_Mg_50C', comprising the ‘id’ and ‘index’. Among these 19 fields, 

'sequence', 'structure', as well as 'predicted_loop_type' are the three input fields while 'reactivity', 'deg_50C’, 

'deg_pH10', 'deg_Mg_pH10', and 'deg_Mg_50C' will be the output fields. A 90:10 percentage split is 

performed on the training dataset resulting in two sets of data, the training set that holds 90% of samples 

obtained from the initial training dataset as well as the validation set that holds the remaining 10%. The 

training set will be used for models’ training, while the validation set will be merited during performance 

evaluation. List of features show in Table 1. 

Table 1.  List of Features 

Features Description 
index Numerical order list with respect to each sample 

id An identifier with respect to each sample 

sequence Combination of A, U, G, and C bases for each sample, depicting the RNA sequence. 

structure Alignment of ‘(’, ‘)’ and ‘.’ characters, illustrating the pairing state of the RNA. Here, ‘(’ 

and ‘)’ indicate paired base, while ‘.’ indicate unpaired interaction. 

Length correlates to the ‘sequence’ feature. 

predicted_loop_type Describe the structure of each character in ‘sequence’ that delineates RNA structures 

having code name called ‘bpRNA’. 

B: Bulge; H: Hairpin loop; E: dangling End; I: Internal loop; 

S: paired “Stem”; X: eXternal loop; M: Multiloop 

signal_to_noise Determine the quality of the sample. Higher SNR, better quality. 

SN_filter Denoted with 1 if the sample fullfils both 2 filter conditions; else 0. 

2 conditions, taking into consideration that only the first 68 bases of RNA samples 

sequence in the Train dataset: 

(1) Minimum value > − 0.5 across all 5 outputs. 

(2) Mean SNR > 1.0 across all 5 outputs. 

seq_length Depict the length of the ‘sequence’ of RNA samples, 107. 

seq_scored 68, depicting the number of positions utilized in scoring with predicted values, is 

analogous to the length of all 5 classes together with their ‘error’. 

reactivity_error A series of calculated errors arising from experimenting with respect to ‘reactivity’  
deg_error_Mg_pH10 A series of calculated errors arising from experimenting with respect to ‘deg_Mg_pH10. 

deg_error_pH10 A series of calculated errors arising from experimenting with respect to ‘deg_pH10’.  

deg_error_Mg_50C A series of calculated errors arising from experimenting with respect to ‘deg_Mg_50C’.  

deg_error_50C A series of calculated errors arising from experimenting with respect to ‘deg_50C’.  

reactivity A series of numbers conveying the probability of the base being paired. 

deg_Mg_pH10 A series of numbers conveying the fragility of the linkage in each base under pH10, with 

the occurrence of Mg. 

deg_pH10 A series of numbers conveying the fragility of the linkage in each base under pH10 having 

no occurrence of Mg. 

deg_Mg_50C A series of numbers conveying the fragility of the linkage in each base under 50°C, with 

the occurrence of Mg. 

deg_50C A series of numbers conveying the fragility of the linkage in each base under 50°C, having 

no occurrence of Mg. 
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2.1.2. Augmented Dataset 

 Deep learning algorithms have an innate defect of tending to overfit the data [15] [16] [17]. To avoid 

the overfitting issue, analysts suggest increasing the number of training samples to ensure diversion. 

Still, data collection requires a lot of procedure and resources and is undeniably time-consuming. 

Therefore, augmenting existing data by modifying the samples will usually be the preference for most 

practitioners in circumventing overfitting [18] [19]. For this research, we utilized two different sets of 

augmented data. The first set of augmented data (Set_1) is the attached augmented data generated with 

the ARNIE package offered by Qaid et al. [10] to ensure utter comparability is attained. In contrast, the 

second set of augmented data (Set_2) is a public dataset retrieved from [20]. 

2.1.3. BPPs Dataset 

 Kaggle platform presented a set of data that comprised 6034 BPPs symmetric square matrix NumPy 

file in forming the BPPs dataset. Summing the 2400 samples from the training dataset and 3634 samples 

from the testing dataset resulted in the amount of 6034 BPPs files. However, this research focused on 

supervised learning, utilizing only the training samples. This BPPs dataset will be engineered to generate 

useful aggregate function features, also known as the numerical features, by Qaid et al. 

2.2. Data Pre-processing 
Fallacious, abominable, or nugatory data will alter the prediction accuracy and quality [21] [22] [23] 

[24]. Therefore, to eschew undesired complications, cleaning and simplifying noisy, crude data to ease 

data handling and minimizing the reduction of data quality by conducting procedures of data pre-

processing is a crucial step. 

2.2.1. Data Cleaning 

 Practicing the first phase of exploratory data analysis with the ‘.isnull’ command, discovered no 

missing value in the dataset extracted; however, the ‘signal_to_noise’ field uncovered that the dataset 

subsumed noisy samples. Therefore, the dataset is filtered with stipulated SN_filter criteria as proclaimed 

in Table 1 to ensure solely refined samples are preserved. After filtering, a total of 304 noisy samples are 

removed from the training dataset 

2.2.2. Label Encoding 

Data could come in multiple data types, i.e., categorical, ordinal and numerical, but recommended 

to be modified into numerical since some algorithms that could not manage non-numerical data exist 

[25]. Label encoding is suggested to encode the three non-numerical inputs: ‘predicted_loop_type,’ 
‘structure,’ as well as ‘sequence.’ Here, the characters are base encoded as depicted in Table 2. 

Table 2.  Label Encoding 

Encoding Method 

Structure 

Char ( ) .     

Index 0 1 2     

RNA sequence 

Char A U G C    

Index 3 4 5 6    

Predicted Loop Type 

Char B E H I M S X 

Index 7 8 9 10 11 12 13 

 

2.3. Feature Engineering 
The quality of inputs, also known as features, will determine the aptitude of a model. Processing 

time and storage space can be greatly saved with the presence of first-string quality inputs. To process 

the raw BPPs matrix dataset into a more apposite form of inputs, the dataset is feature engineered into 

a quinary of aggregator-function inputs, that is, the numerical features introduced in [10], i.e., 

Exponential Weighted Average, Maximum, Normalize, Position Average Value and Summation. Ing et 

al. have proven to carry data visualization techniques in determining the suitability and safety of 
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engineered numerical features [11] [12]. However, since this study engaged only the training dataset in 

which all the samples hold an equal number of bases for each sequence, referred to as ‘seq_length,’ this 

research harnessed all the numerical features as inputs. 

2.4. Deep Learning 
GRU and LSTM are the two deep learning algorithms implemented for this degradation rate 

prediction study. The five models developed with these two algorithms are evaluated with the MCRMSE 

performance metric. 

2.4.1. Gated Recurrent Unit (GRU)  

 GRU may be presented as a spinoff of LSTM [26], a type of RNN. Although GRU is lucid and more 

compact than LSTM, not only the competency in mastering context is not omitted, but on the contrary, 

reducing the training time [27] [28]. Alluded to research conducted by [6] as well as [8] [9] [10] on 

predicting COVID-19 mRNA vaccine degradation rate, it is deduced that GRU is indeed an applicable 

algorithm for this bioinformatics-related artificial intelligence-based research. 

2.4.2. Long Short-Term Memory (LSTM) 

 Compared to GRU, which has only two gates (update gate as well as reset gate) in modulating 

information flow, LSTM has higher gates (output gate, forget gate, as well as input gate) for information 

winnowing [29] [30] [31], leading LSTM to have a higher complexity but better accuracy than GRU. 

If accuracy was of priority and a large dataset was practiced, LSTM used to be cherry-picked by 

researchers more than GRU. The off-the-rack results presented in [10] by Qaid et al. have had this 

argument testified. 

2.5.  MCRMSE Performance Metric 
 The performance and effectiveness of the proposed model will then be evaluated with a performance 

metric. This study is a regression related-study that aims to forecast the mRNA vaccine degradation rate 

with respect to COVID-19. Therefore, regression error is analyzed to study the models’ prediction 

performance, and MCRMSE, which stands for Mean Column-wise Root Mean Squared Error, is 

proposed. The square root of the mean of the squared variations between the predictions and the ground 

truth is factored by the regression performance metric known as RMSE to determine the average 

magnitude of errors [32] [33]. The RMSE metric formula is provided in (1), in which n denotes the 

number of occurrences. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 − 𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖)2𝑛𝑛
𝑖𝑖=1   (1) 

Meanwhile, MCRMSE can be deduced as an average across all RMSE values for each predicted target 

to obtain an individual number evaluation metric from multiple outputs. The formula for MCRMSE is 

presented in (2), where Nt will be inputted with the number of targets for prediction scoring. 

𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 1
𝑁𝑁𝑡𝑡
∑ �1

𝑛𝑛
∑ (𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑁𝑁𝑡𝑡
𝑖𝑖=1 .  (2) 

Equations (1) and (2) attested that both RMSE and MCRMSE are negative-oriented scoring 

techniques. Graced with the presence of a square in equations, the error ranged from zero to positive 

infinity 

3. Results and Discussion 
Other than determining and developing models concerning COVID-19’s mRNA vaccines’ 

degradation rate prediction, this paper concentrates on discovering the sequence of hybridizing effects 

on the prediction results. MCRMSE is engaged as the performance metric for models’ prediction 

performance evaluation across the five outputs. 
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3.1. Hybridization 
This is in contrast to several ensemble approaches with algorithms to serve independently to produce 

several outcomes followed by polling systems like max voting, weighing, averaging and determining a 

single final result. On the other hand, hybridization has algorithms that serve dependently to produce a 

single result with no polling system involved [34]. 

This research utilized the approach suggested in [10] GRU and LSTM in model development. 

Taking the three models proposed by Qaid et al. with the additional two hybrid models suggested in 

this research for hybridization sequence exploration, a total of five models are engaged for this study. All 

the models constituted three bidirectional layers, with each direction having 256 hidden layers. The first 

and second models, i.e., the GRU and LSTM models, have all three layers congregated with GRU and 

LSTM, respectively. The remaining three models were made up of two GRU and one LSTM. The 

hybrid models are given their appellation name dependent on the layer where the LSTM is occupied. 

For illustrative purposes, if the hybrid model has had LSTM occupy the first layer and the remaining 

two layers by GRU, it is named Hybrid_1. The hybridizing sequence of each model is detailed in Table 

3. 

Table 3.  The sequence of Hybridization of Algorithms of Each Developed Model. 

Model Sequence 

Bidirectional Layer 1 Bidirectional Layer 2 Bidirectional Layer 3 

GRU GRU GRU GRU 

LSTM LSTM LSTM LSTM 

Hybrid_1 LSTM GRU GRU 

Hybrid_2 GRU LSTM GRU 

Hybrid_3 GRU GRU LSTM 

. 

3.2. Prediction Performance 
The overall filtered dataset is classified into a validation set as well as a training set with a 90:10 

percentage split to ensure this research achieves utter comparability with Qaid et al.’s research. When 

the augmented data is not included, the split produces training and validation data of 1886 and 210 

samples, respectively. However, when Set_1 augmented data is considered, 3772 samples of training data 

and 420 samples of validation data are split from the 4192 samples of the training dataset that have had 

608 noisy samples removed. In addition, when Set_2 is involved, removing 3076 noisy samples from 

21600 samples, the remaining 18524 samples in the training data are divided into validation data with 

1853 samples as well as training data with 16671 samples for model development. That aside, several 

parameters and hyperparameters are initialized as tabulated in Table 4 to configure the models. 

Table 4.  Parameters And Hyperparameters Initialization For Models Configuration. 

Parameters/ Hyperparameters Value 
Activation Function Linear 

Dropout 0.5 or 0 

Embedding Layer 100 

Hidden Units 256 

Kernel Initializer Orthogonal 

Layers Bidirectional 

Optimizer Adam 

Return Sequence True 

Test Size 0.1 

 

Table 5 shows the deep learning models’ prediction performance evaluated with MCRMSE. 
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Table 5.  Prediction Error For Developed Model Obtained After Evaluation With MCRMSE 

Performance Metric. 

Dropout Augmented 
Data BPPs Data Model 

GRU LSTM Hybrid_1 Hybrid_2 Hybrid_3 

0.5 

Without 

Without 

Training 0.1582 0.1378 0.1598 0.1551 0.1530 

Validation 0.2124 0.2144 0.2130 0.2137 0.2138 

With 

Training 0.1551 0.1498 0.1520 0.1493 0.1577 

Validation 0.2109 0.2138 0.2107 0.2101 0.2127 

Set _1 

Without 

Training 0.1375 0.1178 0.1349 0.1295 0.1269 

Validation 0.1426 0.1289 0.1392 0.1358 0.1352 

With 

Training 0.1360 0.1180 0.1331 0.1299 0.1257 

Validation 0.1400 0.1278 0.1376 0.1345 0.1324 

Set_2 

Without 

Training 0.0961 0.0755 0.0920 0.0878 0.0901 

Validation 0.0800 0.0594 0.0766 0.0714 0.0744 

With 

Training 0.0976 0.0760 0.0845 0.0867 0.0914 

Validation 0.1156 0.0598 0.0786 0.0754 0.0957 

0 Set_2 

Without 

Training 0.0258 0.0156 0.0225 0.0204 0.0200 

Validation 0.0291 0.0174 0.0249 0.0227 0.0235 

With 

Training 0.0214 0.0143 0.0200 0.0178 0.0164 
Validation 0.0220 0.0151 0.0206 0.0180 0.0175 

  

Referring to Table 5, it is observed that although the overall results obtained are slightly better than 

the results presented by [10], the ±0.005 difference is too paltry to be considered when compared with 

the gained loss errors. Nevertheless, this study addresses the effects of hybridizing sequence in the model 

on the prediction performance with the mRNA vaccines rate of degradation dataset. Meanwhile, probing 

the contribution of the numerical BPPs inputs to the prediction. 

From Table 5, regardless of the presence or absence of the BPPs numerical inputs when the dropout 

value is set to 0.5 and involves Set_1 augmented data, the LSTM model scored better than the other 

four models. However, when the Set_1 augmented data is not committed in the experiment, although 

haunted with overfitting issues, hybrid models have shown lower error rates than the LSTM model. 

Setting the dropout value to 0.5, even though the MCRMSE loss of the LSTM model (0.1378) on 

training data is much lower than the other four models when both Set_1 augmented data and numerical 

BPPs inputs are absent, its validation error loss is the highest. In short, a deduction on the LSTM model 

can outshine the other four models when interacting with conversant samples but not with unacquainted 

samples that can be drawn from these results under the criteria. These results indicate that even if the 

overfitting issue is lifted, the LSTM model may not be qualified as the wistful model to be considered. 

Worth noting that when no augmented data is involved, although overfit, the hybrid models show 

lower loss errors than the GRU model (constituting three bidirectional GRU layers) and the LSTM 

model (which comprises three bidirectional LSTM layers). This result presents that hybridization is 

indeed practicable for better model performance at the same time, showing the claim that LSTM can 

achieve better performance than GRU is only applicable when big data is involved. 

This research involved two sets of augmented data to study the hybridization sequence of models for 

predicting the degradation rate of the mRNA vaccine. Besides Set_1, the prediction errors of generated 

models trained with Set_2 augmented data are also available in Table 5. It is discovered that when the 

dropout value is set to 0.5, all models are wiped out by an underfitting issue when trained with the Set_2 

augmented data without the presence of BPPs numerical inputs. The results have presented that when 

models are trained with Set_2 augmented data, involving numerical inputs is no better than excluding 

them. Observation from the prediction errors tabulated in Table 5 discovered that, besides the GRU 

model and Hybrid_3 model, all the remaining three models are being whipped. 

Valuing dropout with 0.5, when Set_1 augmented data is engaged, no overfitting nor underfitting 

issue arises, but when engaging model training with Set_2, virtually all models face an underfitting issue. 

Therefore, to allow the proceeding of the research, the dropout value is tuned to zero and experimented 
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with Set_2 augmented data on all the five generated models. Dropout is a class of stochastic approaches 

introduced originally by Hinton et al. [35] to be employed in practice, such as regularisation, model 

compression, handling overfitting, and more [36] [37] [38]. Tuning the dropout value has outlined its 

ability to handle underfitting besides solving overfitting. 

Dropout is a process involving neurons of a neural network [39] [40], while neurons can be described 

as some weight-linked processors [41] [42]. Weights and activation functions are the two main 

components in neurons besides inputs and outputs [43] [44], but the number of neurons is arbitrary. 

There are no specific rules for prior determination of the number of neurons occurring in each layer 

with respect to a model . The number of neurons will determine the degree of complexity of a model 

[45]. Although overfitting can be solved by dropping some neurons [46], dropping out too many neurons 

will induce underfitting, like those results when trained with Set_2 augmented data with dropout value 

0.5 shown in Table 5. 

After assigning zero to the dropout value, prediction errors show that all the models manage to have 

better performance with the presence of BPPs inputs when Set_2 augmented data is involved. Again, 

the LSTM model surpasses the other models by scoring and achieving the lowest error rate. Meanwhile, 

among Hybrid_1, Hybrid_2, as well as Hybrid_3, it seems that Hybrid_3 possesses the lowest errors and 

manages to rank second, in tow to the LSTM model. With the difference in prediction errors scored by 

these three hybrid models, the message that delivers the importance of hybridizing sequence is once 

again stressed. 

Moreover, as observed from the loss errors tabulated in Table 5, taking the numerical inputs 

engineered from the BPPs dataset alone does not solve overfitting or underfitting problems. In virtue of 

augmented data, it is observed that the numerical features have improved the performance trivially by 

reducing the errors by at most 0.002 with Set_1 augmented data and 0.004 with Set_2 augmented data. 

However, focusing on Set_1 augmented data, surprisingly, LSTM fits better with the dataset without 

the numerical inputs. Although the effect is weeny, the numerical inputs bring no good impact to the 

LSTM model. Even with Set_2 augmented data, although the presence of BPPs manages to help in 

reducing the error, the improvement is merely just ±0.002 compared to without it. With the results, 

reconsideration on implementation of numerical features that show low competency (±0.002 or ±0.004) 

that is too pittance to be discerned compared to the losses error is required when taking computational 

time and complicity into consideration. 

Among the hybrid models, when augmented data is involved, regardless if the augmented data is 

Set_1 or Set_2, results show that the Hybrid_3 model performed better than Hybrid_2, followed by 

Hybrid_1. When there is a presence of numerical inputs but an absence of augmented data, Hybrid_2 

scored better than Hybrid_1 and Hybrid_3 when BPPs numerical inputs are considered; but, Hybrid_3 

has a lower prediction error when both augmented data and BPPs numerical inputs are absent. These 

results have proven that both the training factors and the sequence of hybridizing algorithms in model 

formation influences prediction performances. 

4. Conclusion 
Referring to the results obtained, it may be established that both GRU and LSTM are applicable for 

this mRNA vaccine’s degradation rate prediction research. Notice that when the data augmentation 

process is not practiced, the overfitting issue is more severe in the LSTM model than in all the other 

developed models. But, when the sample size is doubled or more, the LSTM model outdid the other 

models, proving that LSTM is more suited for big data prediction. Over and above that, theorized that 

achieving a good result can only be granted if the complexity of the model is in jibed with the dataset. 

Better pattern recognition and easier model fitting to the dataset can be achieved with fine features 

and inputs. Still, it is essential to be prudent with the implementation of additional engineered features. 

For example, suppose the features show no promising merits to the model in prediction performance. 

In that case, it is recommended to exclude the features as inputs for model training as they will magnify 
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the intricacy of models and lengthen the computation time, which is pyrrhic. The results in Table 5 

have validated the argument that hybridization is a good approach for performance improvement. 

Furthermore, the difference in results presented by Hybrid_1, Hybrid_2, and Hybrid_3 attested to the 

claim that the prediction performance of a hybrid model is not solely dependent on the factors in the 

training stage but also on the sequence of algorithms being hybridized for model development. 

Therefore, experimentation, along with trial and error, is required to examine the sequencing effect of 

the algorithms with respect to the performance involving hybridization. As concluded, the results 

obtained construed that doubling the amount of the original samples resolved the overfitting 

predicament, highlighting that increasing the amount could further improve the prediction performance 

by reducing the loss errors. However, further increasing the sample size could burden a model, and 

underfitting will be induced if the model cannot afford the complexity of the data. Therefore, 

multiplying the amount of sample is hereupon recommended for future research. Still, at the same time, 

it should never overlook the compatibility between model and data to avoid both underfitting and 

overfitting issues. Moreover, this study only compared the hybrid models suggested in [10]. However, 

LSTM surpasses GRU in accuracy with its complexity, justified by the results tabulated. Hence, we 

suggest replacing one of the bidirectional GRU layers with a bidirectional LSTM layer along with 

hyperparameter tuning to improve the hybrid models proposed by [10]. Furthermore, for future work, 

it is proposed to hybridize other machine learning models with deep learning models to lessen the 

complexity of a hybrid model but ascent the prediction performance. 
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