
International Journal of Advances in Intelligent Informatics ISSN 2442-6571

Vol. 4, No. 2, July 2018, pp. xx-xx 1

 http://ijain.org ijain@uad.ac.id

A Survey of Deterministic Graph-based Algorithms for

Discovering Business Processes

Riyanarto Sarno 1,*, Kelly R. Sungkono2

Department of Informatics, Institut Teknologi Sepuluh Nopember, Jl. Raya ITS Surabaya 60111, Indonesia
1 riyanarto@if.its.ac.id; 2 kelsungkono@gmail.com

* corresponding author

1. Introduction

 Analysts use their business process model to find out the latest business process and become a

reference for future development. Unfortunately, modification of a business process model

becomes forgotten in a system that has fast-growing requirements. Thus, changes in a process

model are not in line with changes in the system. Because of the change incompatibility, algorithms

for detecting a business process model automatically are needed. A set of those algorithms is called

process discovery. Process discovery is implemented in many sectors, such as business [1]–[6],

fraud [7]–[9], advertising [10], and medical [11].

 Out of all algorithms, there is a Graph-based algorithm that depicts a process model by
processing a graph-database. This algorithm chose a graph-database to be processed because a
graph-database can store not only activities but also their relationships. The ability for storing
relationships is claimed to produce low time complexity. The Graph-based algorithm has improved,
so there are a group of graph-based algorithms containing a Graph-based algorithm of parallel
process, a Graph-based algorithm of processes containing non-free choice, a Graph-based
algorithm of processes containing invisible task, and a Graph-based algorithm of processes
containing non-free choice and invisible task.

 This research analyzes all of Graph-based algorithms. There are several questions that guide this
research to analyze.

Question (1) : What are issues that are handled by Graph-based algorithms?
Question (2) : How Graph-based algorithms handle those issues?
Question (3) : How is the quality of Graph-based algorithms in the context of time complexity

and performance of its results?

 To answer the last question, this research uses fitness and precision measurements mentioned in
Sungkono et al. [4], Buijs et al. [12]. Those measurements determine the performance of the

AR TI C LE I N F O

AB ST R ACT (1 0 P T)

Article history

Received

Revised

Accepted

 Algorithms of process discovery help analysts to understand business
processes and problems in a system by creating a process model based
on a log of the system. There are existing algorithms of process
discovery, namely Graph-based. Of all algorithms, there are algorithms
that process graph-database to depict a process model. Those algorithms
claimed that those have less time complexity because of the graph-
database ability to store relationships. This research analyzes Graph-
based algorithms by measuring the time complexity and performance
metrics and comparing them with a widely used algorithm, i.e. Alpha
Miner and its expansions. Other than that, this research also gives
outline explanations about Graph-based algorithms and their focus
issues. Based on the evaluations, the graph-based algorithms have high
performance and those have lower time complexity than Alpha Miner
and its expansions.

Keywords

Survey

Graph database

Process discovery

Quality

http://ijain.org/index.php/IJAIN/index
mailto:ijain@uad.ac.id?subject=[IJAIN]

2 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 2, July 2018, pp. xx-xx

 First Author et.al (Title of paper shortly)

obtained process model. Fitness is a measurement of completeness of a model based on processes
in a log. Precision is a measurement of conformity of model behavior with a log. This research
compares graph-database algorithms with widely used algorithm, Alpha miner [13] and its
expansions, i.e. Alpha++ [14] that concerns with non-free choice constructs, Alpha# [15] that
detects invisible tasks for describing some special conditions, and Alpha$ [16] that combines
Alpha++ and Alpha# for detecting non-free choice in invisible tasks.

2. Related Works

 Responding Question (1) in the introduction, this section will describe about three issues of
process discovery that are handled by Graph-based algorithms. Those issues are adopted from
problems that are handled by existing algorithms, Alpha miner [13] and its expansions. Those
issues are also described in the research of workflow pattern [17]. Section 2.1 explains those issues
and simple overviews of each issue. Other than that, in this section especially Section 2.2, the
existing algorithms, Alpha miner [13] and its expansions, are described. The explanation of those
algorithms gives the understanding of the general steps to form a process model. Those algorithms
will be used as the comparison of Graph-based algorithms in time complexity and performance
measurements. The results of the comparison are the answer of Question (3).

2.1 Issues in Discovering Process Models

 There are three issues that are handled by Graph-based algorithms. Those issues are parallel
relationships, non-free choice, and invisible tasks. Parallel relationships contain AND, XOR, and
OR relationships. Those relationships accommodate the behavior of activities carried out by one of
them or run in unison. Afterward, non-free choice accommodates the behavior of selected activity
whose execution depends on other selected activities. Lastly, invisible tasks accommodate a
depiction of specific cases that cannot be described only by activities in the log.

2.1.1 Parallel Relationships

 In a process model, an activity has a relationship with other activities [18]. There is a condition
when two activities are related to each other for all processes or an activity have relationships with
more than one activity. A sequential relationship is a condition when an activity always followed
by the same activity for all processes. On the contrary, a parallel relationship is a condition when
an activity has different related activities.

 Fig. 1 explains both of sequential and parallel relationships. This research uses YAWL notation
[19], [20] to depict those relationships. In the first event log, activity Act_1 always followed by
Act_2 for those three processes. This condition is called a sequential relationship, that is depicted
by a place (a circle) and connectors between the place and activities. Parallel relationships [21] are
divided into three categories. First, activities are included in XOR relationship if only one of them
is selected in a process. As seen on Fig. 1, there is only one of activities {Act_2, Act_3, Act_4}
that is executed in every process. The triangle signs in both of Act_1 and Act_5 describe XOR
relationships by using YAWL. Secondly, AND relationships occur if all activities are executed in
every process with different order of executions. The example log is shown in Fig. 1, wherein
{Act_2, Act_3, Act_4} are executed with different sequences. Lastly, OR relationships depict
conditions that cannot be handled by AND relationships and XOR relationships. The example is
shown in Fig. 1. All processes only execute two out of three activities, i.e. {Act_2, Act_3, Act_4}.
This condition does not meet the rule of XOR relationship and AND relationship. Because of that,
this condition is depicted by OR relationship. The OR relationship is denoted by diamond signs in
YAWL notation.

 Process discovery determines AND or OR relationships in two ways. The first way is
considering the sequence of activities, and the second way is considering the time execution of
activities. Mostly process discovery algorithm, such as Graph-based algorithm, chooses the first
way. Meanwhile, there are researches that determine those relationships by using the second way
[22], [23].

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 3
 Vol. 4, No. 2, July 2018, pp. xx-xx

 First Author et.al (Title of paper shortly)

Fig. 1. A Process Model by Alpha Miner

 Fig. 2. A Process Model including non-free choice

4 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 2, July 2018, pp. xx-xx

 First Author et.al (Title of paper shortly)

Fig. 3. A Process Model including invisible tasks

2.1.2 Non-Free Choice

 With the development of processes, both parallel and sequential relationships cannot handle all
conditions. There are several conditions requiring special depiction. One of the conditions is the
selection of an activity in a parallel relationship is influenced by the selection of activities in the
previous parallel relationship. This condition triggers a non-free choice.

 A non-free choice is an additional implicit dependency in a process model for describing the
election dependence between an activity and its previous activity [1], [14]. The simplified example
is shown in Fig. 2. Based on the event log, Act_5 always executed when Act_2 is chosen, vice
versa for Act_6. The real example is the part of choosing a transportation online. In the application,
there are two options of transportation online, such as a motorcycle and a car. Even if there are two
choices, when a customer bought large kinds of stuff, he chooses a car rather than a motorcycle.
Conversely, if a customer bought small or no kind of stuff, most likely he chooses a motorcycle.
The relationship between the selection of transportation online and the selection of the kinds of
stuff is depicted by non-free choice.

There are several ways to depict a non-free choice in a process model. Both of YAWL and Petri
Net model uses a place and arcs to connect the place and the activities. The additional place is
depicted by a grey circle in Fig. 2. In the graph model, the non-free choice is depicted by an arc
with the name is “NONFREE CHOICE”.

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 5
 Vol. 4, No. 2, July 2018, pp. xx-xx

 First Author et.al (Title of paper shortly)

Process discovery algorithms determine non-free choice by observing the behavior of activities
in the process model. If an activity of selection is executed when an activity of previous selection is
chosen, process discovery algorithm detects those relationships as NONFREE CHOICE.

2.1.3 Invisible tasks

 Besides non-free choice, there are several conditions that cannot be handled by both parallel and

sequential relationships. Those conditions are skip condition, redo condition, and switch condition.

Those conditions need invisible tasks [15] in the depiction of the model.

 The first condition is a skipped condition. Skip condition happens if several processes skipped

one or more activities. The skip condition is detected by comparing the processes with other

processes. If a process executes two activities, such as Act_1 and Act_3, and another process

executes other activities between Act_1 and Act_3, this is called skip condition. Fig. 3 explains a

skip condition in the event log and the process model. As shown in Fig. 3, there is a skip condition

when activity Act_1 can directly be followed by Act_3. An invisible task is added to depict this

condition.

 The second condition is a redo condition. Redo condition happens if several activities in a

process are executed more than one time. The redo condition is detected by calculating the

execution frequency of activities in a process. If a process executes two activities, such as Act_2

and Act_3, and those activities are stored more than one time in a process, this condition is called

redo condition. Fig. 3 explains a redo condition in the event log and the process model. As shown

in Fig. 3, there is a redo condition when activity Act_2 and Act_3 has more than one execution

time in a process. An invisible task is added to depict this condition.

 The second condition is a redo condition. Redo condition happens if several activities in a

process are executed more than one time. The redo condition is detected by calculating the

execution frequency of activities in a process. If a process executes two activities, such as Act_2

and Act_3, and those activities are stored more than one time in a process, this condition is called

redo condition. Fig. 3 explains a redo condition in the event log and the process model. As shown

in Fig. 3, there is a redo condition when activity Act_2 and Act_3 has more than one execution

time in a process. An invisible task is added to depict this condition.

2.2 Algorithms

2.2.1 Alpha Miner

 Alpha Miner algorithm is a deterministic process discovery algorithm that develops causality of
activities based on the event log [24]. Alpha Miner discovers a process model that has sequence
relationships or parallel relationships, such as XOR relationship and AND relationship. Alpha
algorithm utilizes workflow-nets in the form of Petri Nets [25], [26].

 Alpha Miner creates tuples for constructing a process model. There are some rules of
determining a tuple (ActGroup1, ActGroup2). There can be one or more activities in ActGroup1 or
ActGroup2. Those rules are:

1. All of activities in ActGroup1 and ActGroup2 are stored in the event log.

2. All of activities in ActGroup1 have casual dependencies with all activities in ActGroup2. A

causal dependency denoted by → occurs if an activity is followed by another activity, but

another activity is not followed by the activity. For example, based on a process KR, K has

a causal dependency with R because activity K is followed by activity R and activity R is

not followed by activity K.

3. All of activities in ActGroup1 do not have casual dependencies each other, likewise all

activities in ActGroup2.

4. If there are two tuples that have the same activity in ActGroup1 or the same activity in

ActGroup2, those tuples can be combined into a tuple.

For example, if there are two tuples, (K,R) and (K,S), it can be combined into a tuple, (K,

{R,S}).

6 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 2, July 2018, pp. xx-xx

 First Author et.al (Title of paper shortly)

Fig. 4. A Process Model by Alpha Miner

Fig. 5. Steps of Alpha++ Algorithm

Fig. 6. Steps of Alpha# Algorithm

Fig. 7. Steps of Alpha$ Algorithm

Those obtained tuples are arranged into a process model. To arrange into a Petri-Net process
model, Alpha Miner defines those tuples to create places, activities, and arcs. There is an initial
place, an ending place, and a place between i and ActGroup2 for each tuple and arcs connect
activities and places. For example, if there are two tuples, (K,{R,S}), and ({R,S},O), there are four
places (an initial place, an ending place, and two places for each tuple) and four arcs that are used
to build the process model. The process model based on those two tuples is shown in Fig. 4. This
process model has XOR relationship between activity R and activity S.

2.2.2 Alpha++

Alpha++ [14] improves Alpha Miner to depicting non-free choice in a process model forming
Petri Net model. The non-free choice is depicted by adding implicit dependencies. Alpha++ forms
implicit dependencies by adding extra-arcs and extra-places to connect the activities. The steps of
Alpha++ algorithm is showed in Fig. 5. The first step and the second step are the parts of Alpha
algorithm. Alpha++ adds the third and the four steps for creating non-free choice constructs.

There are three rules to depict the implicit dependency as the form of a non-free choice. All
implicit dependencies are added into obtained tuples of Alpha Miner. The rule of depicting the
dependencies are:

• A first implicit dependency of task a and task b occurs if task a is a task of a parallel AND
relationship that has an explicit dependency with another activity and both of another
activity and task b are tasks of an XOR relation.

• A second implicit dependency of task a and task b occurs if task a is a former or latter
activity of AND relation and it has an indirect relationship with task b.

• A third implicit dependency of task a and task b occurs if task a has an indirect relationship
with task b, both of task a and task b are activities of XOR relation and task a has different
XOR relation with task b.

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 7
 Vol. 4, No. 2, July 2018, pp. xx-xx

 First Author et.al (Title of paper shortly)

2.2.3 Alpha#

 Alpha# algorithm [15], [4] aims to detect invisible prime tasks from event logs. This algorithm
is derived from Alpha algorithm. Alpha# divides the prime tasks into three types, SKIP, REDO and
SWITCH. There are several steps of Alpha# algorithm for obtaining invisible prime tasks.

 The steps of Alpha# algorithm are similar with Alpha++ algorithm. The different is

Alpha# adds invisible tasks, meanwhile Alpha++ adds implicit dependencies. The steps of Alpha#

can be seen in Fig. 6. There are several steps to detect invisible tasks by Alpha# algorithm.

 First, Alpha# detects all mendacious dependencies between tasks and identifies redundant

mendacious dependencies. Based on the discovered mendacious dependencies, Alpha# algorithm

constructs invisible prime tasks. Besides, Alpha# algorithm also ensures that newly discovered

dependencies are not composed by the others. Then, Alpha# algorithm combines new casual and

parallel relations between invisible tasks with ones between invisible tasks and visible tasks.

Finally, the set of visible tasks and invisible tasks establishes a process model.

2.2.4 Alpha$

Alpha$ [16] algorithm is a combination of alpha++ and alpha#. Alpha$ algorithm aims to
construct a process model including invisible tasks and non-free choice. Alpha$ algorithm uses
Petri Net for depicting the process model.

 There are several steps to construct a process model using Alpha$ algorithm. The steps are
shown in Fig. 7. Alpha$ improves the rules of mendacious dependencies in Alpha# algorithm by
adding a rule to generate invisible tasks involved in a parallel construct. The improvement rules can
solve a condition that cannot be handled by Alpha#.

Table 1 Graph-based Algorithm for Parallel Process

No Steps of algorithm
The input is an event log that contains names of activities, number of case or process, and time execution of activities

1 Storing event log in the format of graph database following rules in Table 4.

2 For a graph sequence that fulfills a format {node act1 – relation - node act2}:

if the number of the next node of node act1 is more than 1 and the number of previous node, as well as next

node, of node act2 is 1:

Creating XORSPLIT relation that connects act1 and act2

3 For a graph sequence that fulfills a format {node act1 – relation - node act2}:

if the number of the next node of node act1 is 1 and the number of previous node of node act2 is more than 1:

Creating XORSPLIT relation that connects act1 and act2

3 for a graph sequence that fulfills a format { node act1 – relation - node act2 – relation - node act3}:

if the number of the next node of node act1 is more than 1, the number of the next node of node act3 is same

with that of node act1, and act1 is not the next node of both of node act2 and node act3:

Creating ANDSPLIT relation that connects act1 and act2 and ANDSPLIT relation that connects act1 and

act3

4 for a graph sequence that fulfills a format { node act2 – relation - node act3 – relation - node act1}:

if the number of the previous node of node act1 is more than 1, the number of the next node of node act3 is

same with the number of previous node of node act1, and node act1 has not ANDSPLIT relation:

Creating ANDJOIN relation that connects act2 and act1 and ANDJOIN relation that connects act3 and act1

5 for a graph sequence that fulfills a format { node act1 – relation - node act2 – relation - node act3}:

if the number of the next node of node act1 is more than 1, the number of the next node of node act3 is more

than 1 and less than that of node act1, and act1 is not the next node of both of node act2 and node act3:

Creating ORSPLIT relation that connects act1 and act2 and ORSPLIT relation that connects act1 and act3

6 for a graph sequence that fulfills a format { node act2 – relation - node act3 – relation - node act1}:

if the number of the previous node of node act1 is more than 1, the number of the next node of node act3 is

more than 1 and less than the number of previous node of node act1, and node act1 has not ORSPLIT

relation:

Creating ORJOIN relation that connects act2 and act1 and ORJOIN relation that connects act3 and act1

The output is a graph process model containing parallel relationships

8 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 2, July 2018, pp. xx-xx

 First Author et.al (Title of paper shortly)

3. Deterministic Graph-based Algorithms

 In process discovery, deterministic algorithms depict all relationships of activities in an event
log into a process model [27]. Prior deterministic algorithm of process discovery is Alpha [24].
Alpha algorithm has improved, such as Alpha++ [14], Alpha# [15], and Alpha$ [16]. Graph-based
algorithms are categorized as deterministic algorithms. It is because the formulation of those
algorithms refers to Alpha Miner and its expansions. There are four deterministic Graph-based
algorithms, i.e. Graph-based algorithm for parallel process, the algorithm for processes containing
non-free choice, the algorithm for processes containing invisible tasks, and for processes containing
invisible task and non-free choice. The description of Graph-based algorithms is used to respond
Question (2).

3.1 Graph-based Algorithm for Parallel Process

Graph-based Algorithm for Parallel Process [21] constructs a graph process model that contains
parallel relationships by implementing several rules in a graph-database. There are three parallel
relationships that are handled by Graph-based algorithm for parallel process, such as XOR, OR, and
AND. Table 1 describes step-by-step of Graph-based algorithm for parallel process.

Based on Table 1, there are several steps. The first step is storing an event log in the format of
graph-database. There is a storing process because the research cannot keep a log as a graph-
database automatically. Then, the research discovers XOR relationship. To depict a parallel
relationship, a process model needs Split sign and Join sign. The split sign is used to denote the
beginning of a parallel relationship, and the join sign is used to denote the end of a parallel
relationship. XOR relationship occurs if several activities have only one outgoing activity.
Thereafter, the research discovers AND relationship. The activities are included in AND relationship
if the number of outgoing arcs of the activity is same with the number of outgoing arcs of its
previous activity. Lastly, OR relationship is discovered following the condition, i.e. activities having
the number of outgoing arcs less than the total number of outgoing arcs of previous activity and
more than 1 arc.

3.1 Graph-based Algorithm for Processes Containing Non-Free Choice

 Graph-based algorithm for processes containing non-free choice [28] is an expansion algorithm
of Graph-based algorithm for parallel processes. This algorithm adds the rule to obtain non-free
choice in the Graph-based algorithm for parallel processes.

Table 2 shows the pseudocode of Graph-based algorithm for processes containing non-free

choice. This algorithm creates an implicit dependency between two activities if those activity are in

same process and the beginning activity of the implicit dependency is executed before the end

activity. This statement can be seen on sixth step. The final result of the algorithm is a graph

process model.

3.2 Graph-based Algorithm for Processes Containing Invisible Task

 Graph-based algorithm for processes containing invisible task [29] is an expansion algorithm of
Graph-based algorithm for parallel processes. This algorithm adds the rule to obtain invisible task
in the Graph-based algorithm for parallel processes. Table 3 shows the pseudocode of Graph-based
algorithm for processes containing invisible tasks. This algorithm has specific steps. Those steps
are executed after the steps of Graph-based algorithm for parallel processes are executed. This
algorithm will add invisible task between two activities if the beginning activity has more than one
outgoing relationship and the name of the relationships are different. The obtained process model
has formed a graph process model.

Table 2 Graph-based Algorithm for Processes Containing Non-Free Choice

No Steps of algorithm

The input is an event log that contains names of activities, number of case or process, and time execution of activities

1 Converting event log following rules in Table 4.

2 Creating a graph process model following rules in Table 1

3 For a sequence that fulfills {node act1, relation XORJoin, node actafter}:

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 9
 Vol. 4, No. 2, July 2018, pp. xx-xx

 First Author et.al (Title of paper shortly)

4 For a sequence that fulfills { node actbefore, relation XOR Split, node act2}:

5 For 2 nodes, initialized by actfirst and actsecond, that are obtained from a first list of Table 4:

6 If the name of node act1 is same with the name of node actfirst, the name of node act2 is same
with the name of node actsecond, the number of case of node actfirst is same with node actsecond
and the time execution of node actfirst is before the time execution of node actsecond:

7 Creating non-free choice relation that connects node act_1 and node act_2

The output is a graph process model containing non-free choice

Table 3 Graph-based Algorithm for Processes Containing Invisible Tasks

No Steps of algorithm
The input is an event log that contains names of activities, number of case or process, and time execution of activities

1 Converting event log following rules in Table 4.

2 Creating a graph process model following rules in Table 1

3 For a graph sequence that fulfills {node act_i, relation_a, node act_1}:

4 For a graph sequence that fulfills {node act_i, relation_b, node act_2}:

5 if relation_a has “SPLIT” fragment and relation_b has “JOIN” fragment:

6 Creating additional node naming Invisible_Task

7 Creating a graph sequence that fulfills {node act_i, relation_a, Invisible_Task}

8 Creating a graph sequence that fulfills {Invisible_Task, relation_b, node act_2}

7 Deleting relation_b that connects node act_i and node act_2

The output is a graph process model containing invisible tasks

Table 4 A pseudocode to Constructing A Graph-Database based on The Event Log

No Steps of algorithm

The input is an event log that contains names of activities, number of case or process, and time execution of activities

1 Creating two list of nodes, i.e. 1) a list containing all activities and their information in the event log, and 2) a

list containing irredundant activities

2 For id=1 to maximal_id:

3 act1 is a node that has id as its index storing and act2 is a node that has id+1 as its index storing

4 For actbefore and actafter as nodes in the second list:

5 if the number of case of act1 is same with that of act2, the name of act1 is same with that of actbefore,

and the name of activity of act2 is same with that of node actafter:

6 Creating SEQUENCE relation that connect node act1 and act2

The output is a graph database having SEQUENCE relation.

where : id = the index storing of activities in the first list

 maximal_id = the maximal index storing in the first list

Table 5. Event Log for Evaluation

The name of

process

The number

of cases

Issues

Noise

(Y/N)

XOR

(Number

Max

Branch)

OR

(Number

Max

Branch)

AND

(Number

Max

Branch)

Non-Free

Choice

Invisible

Task

Port container

handling

process

200
v

(3 branches)
 v

v

(skip

condition)

N

Certificate

Formation

process

50
v

(3 brances)
 N

Cotton

Production
60

v

(2 branches)

v

(2 branches)
 N

Subprocess of

Retail (Selling

process and

Recording

Item Sales

Journal)

50
v

(4 branches)
 N

10 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 2, July 2018, pp. xx-xx

 First Author et.al (Title of paper shortly)

3.3 Graph-based Algorithm of Processes Containing Non-Free Choice and Invisible Task

Graph-based algorithm of processes containing non-free choice and invisible task [30] are a
combination of Graph-based algorithm of non-free choice and Graph-based algorithm of invisible
task. This algorithm applies steps of invisible task in Graph-based algorithm of invisible task and
then applies steps of non-free choice. The obtained process model is formed in graph process
model.

3.4 Converting Event Log into A Graph Database

All of Graph-based algorithms [21], [30] contain steps for converting event logs. Table 4 shows

a pseudocode for converting event logs. The input of Graph-based algorithms is the event log that

includes case identifications, activities, and execution times. The format of the event log is CSV

format. The output is a graph database.

4. Results and Analysis

 This research evaluates Graph-based algorithm and Alpha algorithm using four event logs as the
data set. The information of data set is shown in Table 5. The complex event log of all event logs is
the event log of port container handling. It is because this event log has non-free choice and invisible
tasks. All of processes in those event logs are complete and right processes, so there are no noises in
there.

 This research evaluates those algorithms by comparing each Graph-based algorithm that has
same ability with Alpha algorithm or its expansions. Graph-based algorithm for parallel processes,
for processes containing non-free choice, for processes containing invisible tasks, for processes
containing invisible tasks and non-free choice, are compared with Alpha Miner, Alpha++, Alpha#,
and Alpha$. The performance metrics are calculated based on those event logs. Performance metrics
that are used in this paper are fitness and precision. The performance metrics and the time
complexity are shown in Table 6.

Table 6. Performance Metrics and Time Complexity

Methods Event Logs
Performance Metrics

Time

Complexity
Fitness

(0.0 – 1.0)

Precision

(0.0 – 1.0)

Alpha Miner

Port container handling

process
0.4 0.42

O (n4)
Certificate formation

process
0.0 0.0

Cotton Production 0.6 1.0

Subprocess of Retail 1.0 1.0

Alpha++

Port container handling

process
0.4 0.63

O (n4)
Certificate formation

process
0.0 0.0

Cotton Production 0.6 1.0

Subprocess of Retail 1.0 1.0

Alpha#

Port container handling

process
1.0 0.28

O (n4)
Certificate formation

process
0.0 0.0

Cotton Production 0.6 1.0

Subprocess of Retail 1.0 1.0

Alpha$

Port container handling

process
1.0 0.83

O (n4)
Certificate formation

process
0.0 0.0

Cotton Production 0.6 1.0

Subprocess of Retail 1.0 1.0

Graph-based Parallel

Process

Port container handling

process
0.2 0.33 O (n2)

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 11
 Vol. 4, No. 2, July 2018, pp. xx-xx

 First Author et.al (Title of paper shortly)

Methods Event Logs
Performance Metrics

Time

Complexity
Fitness

(0.0 – 1.0)

Precision

(0.0 – 1.0)

Certificate formation

process
1.0 0.5

Cotton Production 0,6 1.0

Subprocess of Retail 1.0 1.0

Graph-based Non-Free

Choice

Port container handling

process
0.2 0.5

O (n3)
Certificate formation

process
1.0 0.5

Cotton Production 0,6 1.0

Subprocess of Retail 1.0 1.0

Graph-based Invisible

Task

Port container handling

process
1.0 0.28

O (n2)
Certificate formation

process
1.0 0.5

Cotton Production 0.6 1.0

Subprocess of Retail 1.0 1.0

Graph-based Non-Free

Choice and Invisible

Task

Port container handling

process
1.0 0.83

O (n3)
Certificate formation

process
1.0 0.5

Cotton Production 0.6 1.0

Subprocess of Retail 1.0 1.0

Where: fitness : the metric of calculating the capability of delineating a log processes into a model

 precision : the metric of calculating the suitability of extracted processes of a model with processes of a log

Based on Table 6, there are differences in terms of performance. Comparing Alpha Miner and
Graph-based for parallel processes, Alpha Miner has higher fitness and higher precision in the
container handling process and Graph-based for parallel processes has higher fitness and higher
precision in the certificate formation processes; therefore, Graph-based for parallel processes cannot
depict the right parallel relationships if the process has skip condition, and Alpha Miner cannot
depict OR relation. Comparing Alpha++ and Graph-based algorithm for processes containing non-
free choice, Alpha++ has higher fitness and higher precision in the container handling process and
Graph-based for processes containing non-free choice has higher fitness and higher precision in the
certificate formation processes. Same as the previous comparison, Graph-based for processes
containing non-free choice cannot depict the right parallel relationships if there is a skip condition,
and Alpha++ cannot depict OR relation. For other algorithms, they both have high fitness and high
precision in the processes of port container handling, cotton production, and subprocess of Retail.
On the other hand, in the process of certificate formation, Graph-based algorithms have higher
fitness and higher precision than Alpha# and Alpha$ because two Alpha algorithms cannot depict
OR relation. However, broadly speaking, all of Graph-based algorithms are as effective as Alpha
Miner and its expansions because they have high fitness and high precision.

Based on Table 6, it can be concluded that all Graph-based algorithms are more efficient than
Alpha Miner and its expansions in the term of the time complexity. It is because the highest time
complexity of all Graph-based algorithms, O (n3), is lower than the highest time complexity of
Alpha Miner and its expansions, O (n4). Alpha Miner and its expansions have high time complexity
because when taking the data of the event log, they did not record relationships of activities directly.
Therefore, they always check the possible relationships of the combination of activities in the event
log. On the contrary, Graph-based algorithms record the relationships when taking the data of the
event log, so in the process discovery, those algorithms only analyze the relationships directly,
instead of finding the possible relationships of the activities combination.

5. Conclusion

Graph-based algorithms are algorithms for discovering a process model by storing both of
activities and their relationships in a graph database and processing the graph database into a process

12 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 2, July 2018, pp. xx-xx

 First Author et.al (Title of paper shortly)

model. Graph-based algorithms handle many aspects, such as parallel relationship, non-free choice
constructs, invisible tasks, and non-free choice in invisible tasks.

This research evaluates Graph-based algorithms in context of time complexity, fitness, and
precision. The evaluation is comparing Graph-based algorithms and Alpha Miner and its expansions,
such as Alpha++, Alpha#, and Alpha$. Based on the evaluation, Graph-based algorithms are
effective as Alpha Miner and its expansions. It can be seen that all of those algorithms have high
fitness and precision. However, all of Graph-based algorithms are more efficient because those
algorithms have less time complexities than Alpha Miner and its expansions. The time complexities
of Graph-based algorithms are O (n2) and O (n3), whereas Alpha Miner and its expansions have O
(n4) as their time complexities.

For future work, this research will form heuristic [22], [31] Graph-based algorithms that consider
the frequency of appearance of the processes in the formation of process models. Thereafter, this
research will store the event log as a graph database directly, e.g. using Neo4j, to reduce the steps of
the process discovery.

Acknowledgment

Authors give a deep thank to Institut Teknologi Sepuluh Nopember, the Ministry of Research,
Technology and Higher Education of Indonesia, Direktorat Riset dan Pengabdian Masyarakat, and
Direktorat Jenderal Penguatan Riset dan Pengembangan Kementerian Riset, Teknologi dan
Pendidikan Tinggi Republik Indonesia for supporting the research.

References

[1] R. Sarno and K. R. Sungkono, “Coupled Hidden Markov Model for Process Discovery of Non-Free

Choice and Invisible Prime Tasks,” Procedia Computer Science, vol. 124, pp. 134–141, 2018.

http://doi.org/10.1016/j.procs.2017.12.139.

[2] R. Sarno and K. R. Sungkono, “Coupled Hidden Markov Model for Process Mining of Invisible

Prime Tasks,” International Review on Computers and Software (IRECOS), vol. 11, no. 6, pp. 539–

547, 2016. http://doi.org/10.15866/irecos.v11i6.9555.

[3] R. Sarno and K. R. Sungkono, “Hidden Markov Model for Process Mining of Parallel Business

Processes,” International Review on Computers and Software (IRECOS), vol. 11, no. 4, pp. 290–300,

2016. http://doi.org/10.15866/irecos.v11i4.8700.

[4] K. R. Sungkono and R. Sarno, “Constructing Control-Flow Patterns Containing Invisible Task and

Non-Free Choice Based on Declarative Model,” International Journal of Innovative Computing,

Information and Control (IJICIC), vol. 14, no. 4, 2018.

[5] K. R. Sungkono, R. Sarno, and N. F. Ariyani, “Refining business process ontology model with

invisible prime tasks using SWRL rules,” in 2017 11th International Conference on Information

Communication Technology and System (ICTS), 2017, pp. 215–220.

http://doi.org/10.1109/ICTS.2017.8265673.

[6] R. Sarno, W. A. Wibowo, Kartini, Y. A. Effendi, and K. R. Sungkono, “Determining Model Using

Non-Linear Heuristics Miner and Control-Flow Pattern,” TELKOMNIKA (Telecommunication,

Computing, Electronics and Control), vol. 14, no. 1, pp. 349–360, 2016.

http://doi.org/10.12928/telkomnika.v14i1.3257.

[7] K. R. Sungkono and R. Sarno, “Patterns of fraud detection using coupled Hidden Markov Model,” in

2017 3rd International Conference on Science in Information Technology (ICSITech), 2017, pp.

235–240. http://doi.org/10.1109/ICSITech.2017.8257117.

[8] R. Sarno, R. D. Dewandono, T. Ahmad, M. F. Naufal, and F. Sinaga, “Hybrid Association Rule

Learning and Process mining for Fraud Detection,” IAENG International Journal of Computer

Science, vol. 42, no. 2, pp. 59–72, 2015.

[9] S. Huda, R. Sarno, T. Ahmad, and H. A. Santoso, “Identification of Process-based Fraud Patterns in

Credit Application,” in 2014 2nd International Conference on Information and Communication

Technology (ICoICT), 2014, pp. 84–89. http://doi.org/10.1109/ICoICT.2014.6914045.

[10] A. S. Osses, L. Q. Da Silva, B. F. Cobo, and M. Arias, “Business process analysis in advertising: An

extension to a methodology based on process mining projects,” in Computer Science Society (SCCC),

2016 35th International Conference of the Chilean, 2016, pp. 1–12.

http://doi.org/10.1109/sccc.2016.7836000.

[11] W. Chomyat and W. Premchaiswadi, “Process mining on medical treatment history using

conformance checking,” in ICT and Knowledge Engineering (ICT&KE), 2016 14th International

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 13
 Vol. 4, No. 2, July 2018, pp. xx-xx

 First Author et.al (Title of paper shortly)

Conference, 2016, pp. 77–83. http://doi.org/10.1109/ictke.2016.7804102.

[12] J. C. A. M. Buijs, B. F. Van Dongen, and W. M. P. van Der Aalst, “On the role of fitness, precision,

generalization and simplicity in process discovery,” in OTM Conferences (1), 2012, vol. 7565, no. 1,

pp. 305–322. http://doi.org/10.1007/978-3-642-33606-5_19.

[13] A. K. A. De Medeiros, B. F. Van Dongen, W. M. P. van der Aalst, and A. J. M. M. Weijters,

“Process mining: Extending the α-algorithm to mine short loops,” Eindhoven University of

Technology Eindhoven, pp. 1–25, 2004. http://doi.org/10.1016/j.is.2011.01.003.

[14] L. Wen, W. M. P. van der Aalst, J. Wang, and J. Sun, “Mining process models with non-free-choice

constructs,” Data Mining and Knowledge Discovery, vol. 15, no. 2, pp. 145–180, 2007.

http://doi.org/10.1007/s10618-007-0065-y.

[15] L. Wen, J. Wang, W. M. P. van der Aalst, B. Huang, and J. Sun, “Mining process models with prime

invisible tasks,” Data & Knowledge Engineering, vol. 69, no. 10, pp. 999–1021, Oct. 2010.

http://doi.org/10.1016/j.datak.2010.06.001.

[16] Q. Guo, L. Wen, J. Wang, Z. Yan, and P. S. Yu, “Mining Invisible Tasks in Non-free-choice

Constructs,” in Lecture Notes in Computer Science, Springer International Publishing, 2015, pp.

109–125. http://doi.org/10.1007/978-3-319-23063-4_7.

[17] N. Russell, A. H. M. Ter Hofstede, W. M. P. van der Aalst, and N. Mulyar, “WORKFLOW

CONTROL-FLOW PATTERNS A Revised View,” BPM Center Report, vol. 2, pp. 06–22, 2006.

http://doi.org/10.1.1.93.6974.

[18] W. M. P. Van Der Aalst, Process Mining Discovery, Conformance and Enhancement of Business

Processes. Germany: Springer, 2011.

[19] W. M. P. Van Der Aalst and A. H. M. Hofstede, “YAWL : yet another workflow language,” vol. 30,

pp. 245–275, 2005. http://doi.org/10.1016/j.is.2004.02.002.

[20] E. Börger, “Approaches to modeling business processes : a critical analysis of BPMN , workflow

patterns and YAWL,” pp. 305–318, 2012. http://doi.org/10.1007/s10270-011-0214-z.

[21] R. Sarno, K. R. Sungkono, and R. Septiarakhman, “Graph-Based Approach for Modeling and

Matching Parallel Business Processes,” International Information Institute (Tokyo). Information, vol.

21, no. 5, pp. 1603--1614, 2018.

[22] R. Sarno, Y. A. Effendi, and F. Haryadita, “Modified Time-Based Heuristics Miner for Parallel

Business Processes,” International Review on Computers and Software (IRECOS), vol. 11, no. 3, pp.

249–260, 2016. http://doi.org/10.15866/irecos.v11i3.8717.

[23] R. Sarno, Kartini, W. A. Wibowo, and A. Solichah, “Time based Discovery of parallel business

processes,” Proceeding - 2015 International Conference on Computer, Control, Informatics and Its

Applications: Emerging Trends in the Era of Internet of Things, IC3INA 2015, pp. 28–33, 2016.

http://doi.org/10.1109/IC3INA.2015.7377741.

[24] W. M. P. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining: discovering process

models from event logs,” IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 9, pp.

1128–1142, Sep. 2004. http://doi.org/10.1109/TKDE.2004.47.

[25] A. Rozinat, R. S. Mans, M. Song, and W. M. P. van der Aalst, “Discovering colored Petri nets from

event logs,” International Journal on Software Tools for Technology Transfer, vol. 10, no. 1, 2008.

http://doi.org/10.1007/s10009-007-0051-0.

[26] R. Sarno, B. A. Sanjoyo, I. Mukhlash, and H. M. Astuti, “Petri Net model of ERP business process

variation for small and medium enterprises,” Journal of Theoretical & Applied Information

Technology, vol. 54, no. 1, pp. 31–38, 2013.

[27] M. Werner and N. Gehrke, “Process Mining,” WISU - die Zeitschrift für den Wirtschaftsstudenten

7/13, pp. 1–16, 2013.

[28] R. Sarno, K. R. Sungkono, A. Y. Hadiwijaya, and C. Fatichah, “An Algorithm for Discovering

Process Models Containing Non-Free Choice Using Graph Database,” Intelligent Networks and

Systems Society (INASS).

[29] R. Sarno, K. R. Sungkono, R. Johanes, and D. Sunaryono, “Graph-Based Algorithms for Discovering

A Process Model Containing Invisible Tasks,” Intelligent Networks and Systems Society (INASS).

[30] H. Dermawan, R. Sarno, and K. R. Sungkono, “Graph-based Algorithms for Discovering Non-free-

choice in Invisible Tasks of Business Process,” International Journal of Electrical and Computer

Engineering (IJECE).

[31] A. J. M. M. Weijters, W. M. P. van der Aalst, and A. K. A. De Medeiros, “Process Mining with the

Heuristics Miner Algorithm,” Technische Universiteit Eindhoven, Tech. Rep. WP, vol. 166, no. July

2017, pp. 1–34, 2006.

