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Abstract

One type of clustering validation results is an internal criteria validation where a
silhouette index is the well-known measure and plot. Another index is a centroid-based
shadow value (CSV) which depicts an opposite measure and plot to the silhouette index.
A medoid-based shadow value (MSV) index is proposed in which it behaves similarly
to the silhouette index and produces a network graph similar to a neighborhood graph
resulted from the CSV. The network graph of the MSV has a multiplicative parameter
(c) to adjust its edges visibility and is more a appropriate plot than a neighborhood
graph of CSV when the data set is non-numerical.

Keywords: Cluster validation, Cluster visualization, Internal criteria,
Medoid, Shadow value

1 Introduction

Cluster analysis is an unsupervised method to group objects such that homogenous objects
are clustered in the same group. As an unsupervised method in which pre-defined class
memberships are absent, the partitioning result from a cluster analysis has to be validated.
There are three types of validation for the partitioning results; they are relative, external,
and internal criteria (Webb and Copsey 2011). They differ with respect to the compactness
assumption and information provided in the data.

Among the three criteria, the relative criteria do not require the compactness assumption.
It based on a re-sampling scheme via either cross validation or bootstrap methods. The
latter is a sampling with replacement strategy to assess the stability of clusters (Jain and
Moreau 1987) and select the appropriate number of clusters (Fang 2012). The stability is
then visualized in a heatmap figure (Monti et al. 2003) where a block diagonal figure depicts
the most stable cluster result.

The external criteria are commonly applied in a benchmarking process with either known
classes or the “gold standard” algorithm (Handl, Knowles, and Kell 2005). When a new
clustering algorithm is developed, the routine process to evaluate this algorithm is by applying
it in a supervised environment. Then, an evaluation measure compares this new algorithm to
the existing/ gold algorithms. Two examples of external criteria applied to compare a new
algorithm are the clustering accuracy rate (Ji et al. 2013) and the cluster purity (Handl,
Knowles, and Kell 2005; Wu et al. 2008; Waiyama and Kangkachit 2018). Arbelaitz et al.
(2013), moreover, has addressed many external criteria; e.g. Rand (Rand 1971), and adjusted
Rand (Hubert and Arabie 1985).



The internal criteria, on the other hand, are applied when a real data set, which is lacking
true classes, is analyzed by means of cluster analysis. Charrad et al. (2014) has cited as
many as 19 internal validation indices; e.g. silhouette (Rousseeuw 1987), and gap statistic
(Tibshirani, Walther, and Hastie 2001). One of the popular indices is silhouette because it
offers a visualization of each cluster (Leisch 2008). It non-linearly combines the compactness
and separation assumptions (Brock et al. 2008). A similar approach to silhouette has
been developed namely a shadow value (Leisch 2006; Leisch 2010), in which the values are
calculated based on the first and second closest centroids and can also be plotted as silhouette
value.

Although the silhouette and shadow value can be plotted, they depict different figures in the
same case. Well-separated clusters, for instance, are indicated by high values of silhouette
(Rousseeuw 1987), while they have small indices in the case of shadow values (Leisch 2010).
Because the silhouette is medoid-based, which is suitable for any type of data, and the
shadow value is centroid-based, the latter gains advantage when the data consist of numerical
variables such that a 2-dimensional representation of the neighborhood graph of cluster results
can be produced. For any type of data, however, a neighborhood graph is not visible.

In this paper, we propose a new formula to imitate the silhouette and centroid-based shadow
value characters. It is a medoid-based shadow value. The figures produced mimic both the
silhouette and centroid-based shadow values where the plot is similar to the silhouette and
the 2-dimensional graph is a neighborhood graph alike.

2 The Proposed Method

2.1 Shadow Value for Medoid-based Clustering

The silhouette value can be calculated via

si(z) = _bi—as
-~ max(ay,b,)’

where a, and b, are the average distance of object x to all objects within cluster and to
all objects within the nearest cluster, respectively (Rousseeuw 1987). The value then has a
minimum -1 and maximum 1 where the best separated clusters have a value equal to 1. The
shadow value, on the other hand, is attained by

2d(x, c(x))
d(z,c(z)) +d(z,d(x))’

sh(z) =

where d(z, ¢(x)) is the distance between object x to the first closest centroid and d(z, ¢ (z))
is the distance between object x to the second closest centroid (Leisch 2010). The poorly
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Figure 1: Silhouette (left) and shadow (right) values of well-separated clusters.



separated clusters are indicated by a shadow value of 1 meaning that the first and second
closest centroids are equidistant from x.

Although the shadow value has 0 as a minimum value, which can be achieved when the
object is very close to the centroid, an object that has twice the distance to the second closest
centroid compared to the first second centroid achieves 0.67 as a shadow value, which is
considered as a high shadow value. Figure 1 moreover, illustrates well-separated clusters via
silhouette and shadow values where high peaks occur in silhouette and low peaks appear in
the shadow plot. Due to the contradictory image between silhouette and shadow plots, when
interpreting the plot, it requires careful consideration.
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Figure 2: Medoid-based shadow value (MSV) of well-separated clusters

Table 1: Centroid-based shadow (CSV) and medoid-based
shadow (MSV) values comparison

1x 2x 3x 4x 1554 6x Tx 8x Ox 10x

CSv. 1 067 050 040 0.33 029 025 0.22 0.20 0.18
MSV 0 0.50 0.67 0.75 0.80 0.83 0.86 0.88 0.89 0.90
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A new formula is developed to calculate a new shadow value in a medoid-based clustering.
To adapt the silhouette and centroid-based shadow value (CSV) characters, these following
constraints are applied:

1. The lower and upper bounds of the value are 0 and 1.
2. The worst separated cluster is 0, while the best is 1.
3. The value of 0 is valid for an equidistant between the first and second closest medoids.

4. The value of 1 is achieved when the object is the medoid object.

With these constraints, the new shadow values in a medoid-based clustering are then simplified
into

d(z, d(x)) — d(z, c(x))
d(z, () '

msv(z) =

Figure 2 illustrates the medoid-based shadow value (MSV) of well-separated clusters where it
depicts a similar figure to the silhouette plot (Figure 1 left). Table 1, in addition, compares
the index of CSV vs MSV in a specified distance of the second closest centroid. An object
that has an equidistant between the first and second closest centroid, has CSV equal to 1
compared to 0 in the MSV.

2.2 Visualization

The CSV can be plotted in a neighborhood graph (network graph) as well. The graph has k
nodes, where k is the number of clusters, and is an undirected graph with an average shadow
values of the closest clusters as its edges (Leisch 2010). The cluster similarity is measured
by the average shadow value within a cluster and the closest cluster. Figure 3 illustrates
a neighborhood graph of well-separated clusters where all clusters have thin lines. A thick
line in a neighborhood graph, on the other hand, denotes a high shadow value indicating
poor-separated clusters.

The representation of either thin or thick lines in a neighborhood graph is naturally attractive
where a thick line implies poorly separated clusters (close to each other). This characteristic
is retained to develop a new technique of visualization. Because the neighborhood graph is a
centroid-based plot, a network graph of medoid-based clustering is developed such that it fits
for any type of data, i.e. numerical, binary, categorical, and mixed variables. There are two
type of visualizations; they are medoids and all-object visualization.

To create a medoid-based visualization, an element of M (k x k matrix) is calculated by

dmij — max(cfi, J])
aij =

dmij ’
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Figure 3: Neighborhood graph of well-separated clusters

where dm,; is the distance between the medoid in the cluster ¢ and j (the between cluster
distance), d; is the average distance among objects in the cluster i (the average of within
cluster distance). Then, the diagonal elements of M are restricted to be 0. The matrix M is
a squared matrix that is equivalent to the medoid-based shadow values among clusters.

To plot marix M directly in a network graph, the off-diagonal values of M represented as
edges are converted into 1 — a;; such that thin lines depict well-separated clusters like in a
neighborhood graph. Then, the nodes and edges are laid in a 2-dimensional space via a graph
layout algorithm. Battista et al. (1994) has surveyed many graph layouts, e.g. Kamada and
Kawai (1989) and Fruchterman and Reingold (1991). The x and y axes are then meaningless
whereas it is more relevant when the data have non-numerical variables than a neighborhood
graph. Figure 4 shows a network graph of medoid-based shadow value by plotting directly
matrix M. The graph is similar to the neighborhood graph, which shows well-separated
clusters

In the all-objects visualization, the information of the medoids network graph is added by all
objects information. A particular medoid (node) has a/ some other nodes connected via an
edge based on its cluster membership. A medoid-based shadow value matrix of all objects O
(n x n matrix) is created where all elements are “NA” except the o,, elements where z is an
object and y is the closest medoid. The diagonal elements of O are restricted to be “NA”
and the o,, element has a medoid-based shadow value of object . The matrix M and O
information are combined in order to create an all-object network graph. In summary, the
matrix M indicates the separation among clusters, while the matrix O represents the within



Figure 4: Medoids network graph of well-separated clusters (kamada-kawai layout)

cluster compactness.

Transforming the information of matrix M and O directly into a network topology, a medoid-
based shadow value graph of all objects is produced. Figure 5 illustrates well-separated
clusters in a network graph with all objects where it has a high separation and compactness.
A high separation between clusters is indicated by a thin line, while a high compactness
within a cluster is addressed by a thick line among objects to their cluster medoids. A
constant (c¢) is also introduced in order to multiply the medoid-based shadow value such that
the separation and compactness are more visible. The constant ¢ is also applicable to the
aforementioned medoid visualization.

3 Method

To apply the proposed MSV index and visualization, some simulated data sets are generated.
Qiu and Joe (2006a) has developed an algorithm to generate numerical data set for clustering
algorithm benchmarking with a pre-specified degree of separation (Qiu and Joe 2006b). The
simulated data sets in this study vary in the separation degree only (well, middle, and poorly
separated). The results of these three different separated clusters are compared among the
existing indices, i.e. silhouette and shadow value (CSV) in the medoid setting, with the
developed MSV index.

Table 2: The settings of the simulated data sets

Separation n number of objects p number of variables k number of clusters

0.5 1000 2 )
0.0 1000 2 )




Separation n number of objects p number of variables k number of clusters

-0.5 1000 2 )

Because this paper focusses on the different setting of degree separation, the variables of
n (the number of objects), p (the number of variables), and k (the number of clusters) in
the simulated data are fixed that are set as 1000, 2, and 5, respectively (Table 2). The
algorithm to group the data is also fixed via partitioning around medoid (PAM) (Kaufman
and Rousseeuw 1990) as a popular medoid-based algorithm. Then, each simulated data set is
replicated. Although 50 replications for each simulated data set are fairly precise (Hennig
2007), the strategy to replicate the simulated data in this paper is via subsetting by choosing
the number of the subset sample m = n/2, i.e. 1000/2 = 500 replicates.

For real data sets, the data sets from the UCI repository (Lichman 2013), which represent
well and poorly separated clusters, are also analyzed. The analyses produced in this article,
moreover, are run in an Intel i3 4GB RAM using R software environment (R Core Team
2015) using the clusterGeneration, cluster, kmed, ggplot2, geomnet, and flezclust packages.

4 Results and Discussion

In this section, the MSV proposed index is applied in simulated data sets and real data
sets. The simulated data sets are generated via the clusterGeneration package (Qiu and Joe
2015). Meanwhile, the real data sets are two data sets of UCI repository data sets (Lichman
2013) namely the well-known iris data set, and lenses data sets to represents numerical and
categorical data sets partitioned by PAM via the cluster package (Maechler et al. 2017). The
silhouette and shadow values, moreover, are obtained by the kmed package (Budiaji 2019).
The network graph, in addition, is plotted by the ggplot2 (Wickham 2016), geomnet (Tyner
and H. Hofmann 2016) and flezclust (Leisch 2006; Leisch 2010) packages.

4.1 Simulated data

The first simulated data set (well-separated clusters) has high values in both the silhouette
and MSV indices, yet it has low values in the CSV (Figure 6). The contradictory results
of the CSV to the silhouette and MSV, moreover, occur in all types of simulated data set
except in the middle-separated clusters where all indices produce comparable results between
0.4 and 0.6. Figure 6 also shows that the MSV has always had a higher index compared to
the silhouette value. It can be explained that the span value of the MSV is shorter than the
silhouette value, i.e. [0,1] compared to [-1, 1] (Rousseeuw 1987).

In summary, the proposed MSV index adapts the silhouette values well. Although it has
reverse values to the CSV, it is analytically comparable to the CSV (Table 1). Thus, the
MSV index is a promising index for the internal criteria evaluation of the cluster results.

For the network visualization of the simulated data, which are partitioned into 5 clusters, all
objects are plotted by comparing the well, middle, and poorly separated cluster data sets.
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Figure 5: All-object network graph of well-separated clusters with ¢ = 1 (left) and ¢ = 2
(right)
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Figure 6: Boxplot of the mean value indices of the silhoutte (left), MSV (middle), and shadow
(right) values
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Figure 7: All-object visualizations of well (left), middle (middle), and poorly (right) separated
clusters
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Figure 7 shows the differences among them. The well-separated clusters (left) have thin lines
among medoids and thicker lines among objects within a cluster indicating that they have
high values of both separation and compactness. Meanwhile, the poorly-separated clusters
(right) have opposite image where the lines among medoids are thicker than the lines among
objects, which represent a low value of separation among medoids.

4.2 Real data set

4.2.1 Iris data set

Table 3: The misclassification table of the PAM algorithm
in the iris data set

setosa  versicolor virginica

50 0 0
0 48 14
0 2 36

Figure 8: Silhouette (left), CSV (middle), and MSV (right) plots of the iris data set

The iris data set is a well-known data set with four numerical variables that consists of 150
objects divided into three species of iris (setosa, versicolor, and virginica). To compare the
silhouette, CSV, and MSV indices, the PAM algorithm in the Euclidean distance matrix
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of this data is applied with the number of clusters k equal to 3. The accuracy rate of the
PAM algorithm is 86.67% (Table 3), which is 100% correct and achieved in cluster 1 (setosa
class). If internal validation with silhouette, CSV, and MSV indices is plotted (Figure 8),
they produce similar results and cluster 1 has the best result, i.e. high value of silhouette and

MSV, and small value of CSV.
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Figure 9: All-objects visualization of the iris data set with ¢ = 1 (left) and ¢ = 2 (right)

Figure 12 illustrates network graphs of iris data sets based on the MSV of all objects. By
adjusting the value of ¢ (multiplicative constant for MSV) into 2 (Figure 12 right), clusters
2 and 3 are discernable that they have low separation. It also shows that cluster 1 has the
highest compactness among the three clusters portrayed by the thickest line within cluster 1.

13



0.1

PC2
0.0
I

-0.1
I

Figure 10: The neighborhood graph (top) and medoids visualization ¢ = 2 (bottom) of the
iris data set

The value of ¢ = 2 is then adopted in the medoid visualization plot (Figure 10 bottom)
such that it shows that cluster 1 is separable to cluster 2 and 3. If it is compared to the
neighborhood graph (Figure 10 top), it depicts a similar image where clusters 2 and 3 have
low separation. However, the axes in the medoid visualization are meaningless, while they
can be the first and second principle components in the neighborhood graph. It also has
more edges/ lines than the neighborhood graph, which draws an edge between two nodes
if only at least one object has the closest and second closest to those nodes (Leisch 2006),
because it is based on the squared matrix M.



4.2.2 Lenses data set

Table 4: The misclassification table of the PAM algorithm
in the lenses data set

Hard Soft None

Cluster 1 3 1 5
Cluster 2 1 3 4
Cluster 3 0 1 6
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Figure 11: Silhouette (left), CSV (middle), and MSV (right) plots of the lenses data set

The lenses data set consists of 24 patients with four categorical variables. The patients are
classified into three groups: hard contact lenses, soft contact lenses, and none of those two
types of lenses. The PAM algorithm in the simple matching distance matrix of this data
is applied with k equal to 3. The accuracy rate is low, i.e. 50% (Table 4), which indicates
poor separated clusters. Figure 11 shows the three internal criteria of the clustering results
indicating poorly separated clusters as well.

When the all objects are visualized in a network graph with ¢ = 2, all clusters have low
separation indicated by thick lines (Figure 12). The compactness within a cluster is also
low representing by thin lines. Figure 13, moreover, illustrates the medoid plot with ¢ = 2,
adapted from the all objects network graph, in which all medoids are close to each other,
i.e. poor separated. On the other hand, the neighborhood graph version of this plot is absent
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Figure 12: All-objects visualization of the lenses data set with ¢ = 1 (left) and ¢ = 2 (right)

Figure 13: The medoid visualization of the lenses data set with ¢ = 2
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due to non-numerical variable data set. With this type of data set, the centroid calculation
is unfeasible. Thus, a conversion of medoid-based into centroid-based, which is required to
produce the neighborhood graph (Leisch 2006), is also unachievable such that a medoids
visualization gains an advantage compared to a neighborhood graph.

5 Conclusion

In this paper, we proposed an internal criteria validation for cluster results, namely the
medoid-based shadow value (MSV). The MSV index imitated the silhouette index behavior
where the higher value of the index, the better the cluster result. While a centroid-based
shadow value (CSV) could produce a neighborhood graph, the MSV was able to be visualized
in all objects and medoid network graphs where the latter is a neighborhood graph alike.
Both the all objects and medoid network visualizations had a parameter ¢ to regulate the
visibility of the edges. It was suggested to first apply the all-objects network graph with
multiple ¢. Then, the ¢ in the medoid network graph adapted the suitable ¢ obtained from the
c of all objects graph. The MSV visualization axes, in addition, were meaningless such that
in non-numerical type of data set, it was preferred and more suitable than a neighborhood
graph.
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