(2) Sarina Sulaiman (Soft Computing Research Group, Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Malaysia)
(3) Siaka Konate (Department of Electronic and Telecommunications, Normal School of Technical and Vocational Education, Bamoko, Mali)
(4) Modawy Adam Ali Abdalla (College of Energy and Electrical Engineering, Hohai University, Nanjing, China; and Department of Electrical and Electronic Engineering, College of Engineering Science, Nyala University, Nyala,, Sudan)
*corresponding author
AbstractThis study presents a comparative analysis of various deep learning (DL) methods for multi-input and multi-output (MIMO) time-series forecasting of stock prices. The analysis is conducted on a dataset comprising the stock price of Bitcoin. The dataset consists of 2950 rows from December 2017 to December 2021. This study aims to evaluate the performance of multiple DL methods, including Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Long Short Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), and Gated Recurrent Unit (GRU). The evaluation criteria for selecting the best-performing methods in this research are based on two performance metrics: Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE). These metrics were chosen for specific reasons related to assessing the accuracy and reliability of the forecasting models. MAPE is used to assess accuracy, while RMSE helps detect outliers in the system. Results show that the LSTM method achieves the best performance, outperforming other methods with an average MAPE value of 8.73% and Bi-LSTM has the best average RMSE value of 0.02216. The findings of this study have practical implications for time-series forecasting in the field of stock trading. The superior performance of LSTM highlights its potential as a reliable method for accurately predicting stock prices. The Bi-LSTM model's ability to detect outliers can aid in identifying abnormal stock market behavior. In summary, this research provides insights into the performance of various DL models of MIMO for stock price forecasting. The results contribute to the field of time-series forecasting and offer valuable guidance for decision-making in stock trading by identifying the most effective methods for predicting stock prices accurately and detecting unusual market behavior.
KeywordsMIMO; Time series; Deep learning; forecasting
|
DOIhttps://doi.org/10.26555/ijain.v9i2.1092 |
Article metricsAbstract views : 754 | PDF views : 205 |
Cite |
Full TextDownload |
References
[1] O. B. Sezer, M. U. Gudelek, and A. M. Ozbayoglu, “Financial time series forecasting with deep learning : A systematic literature review: 2005–2019,” Appl. Soft Comput., vol. 90, p. 106181, May 2020, doi: 10.1016/j.asoc.2020.106181.
[2] M. S. Gorus and M. Aydin, “The relationship between energy consumption, economic growth, and CO2 emission in MENA countries: Causality analysis in the frequency domain,” Energy, vol. 168, pp. 815–822, Feb. 2019, doi: 10.1016/j.energy.2018.11.139.
[3] H. Lan, C. Zhang, Y.-Y. Hong, Y. He, and S. Wen, “Day-ahead spatiotemporal solar irradiation forecasting using frequency-based hybrid principal component analysis and neural network,” Appl. Energy, vol. 247, pp. 389–402, Aug. 2019, doi: 10.1016/j.apenergy.2019.04.056.
[4] K. Bandara, P. Shi, C. Bergmeir, H. Hewamalage, Q. Tran, and B. Seaman, “Sales Demand Forecast in E-commerce Using a Long Short-Term Memory Neural Network Methodology,” in Lecture Notes in Computer Science, 2019, pp. 462–474, doi: 10.1007/978-3-030-36718-3_39.
[5] T. Bikku, “Multi-layered deep learning perceptron approach for health risk prediction,” J. Big Data, vol. 7, no. 1, p. 50, Dec. 2020, doi: 10.1186/s40537-020-00316-7.
[6] P. Hewage, M. Trovati, E. Pereira, and A. Behera, “Deep learning-based effective fine-grained weather forecasting model,” Pattern Anal. Appl., vol. 24, no. 1, pp. 343–366, Feb. 2021, doi: 10.1007/s10044-020-00898-1.
[7] X. Yang, X. Liu, and Z. Li, “Multimodel Approach to Robust Identification of Multiple-Input Single-Output Nonlinear Time-Delay Systems,” IEEE Trans. Ind. Informatics, vol. 16, no. 4, pp. 2413–2422, Apr. 2020, doi: 10.1109/TII.2019.2933030.
[8] C. Deng, Y. Huang, N. Hasan, and Y. Bao, “Multi-step-ahead stock price index forecasting using long short-term memory model with multivariate empirical mode decomposition,” Inf. Sci. (Ny)., vol. 607, pp. 297–321, Aug. 2022, doi: 10.1016/j.ins.2022.05.088.
[9] K. Li, G. Huang, S. Wang, B. Baetz, and W. Xu, “A Stepwise Clustered Hydrological Model for Addressing the Temporal Autocorrelation of Daily Streamflows in Irrigated Watersheds,” Water Resour. Res., vol. 58, no. 2, pp. 1–31, Feb. 2022, doi: 10.1029/2021WR031065.
[10] F. Amato, F. Guignard, S. Robert, and M. Kanevski, “A novel framework for spatio-temporal prediction of environmental data using deep learning,” Sci. Rep., vol. 10, no. 1, p. 22243, Dec. 2020, doi: 10.1038/s41598-020-79148-7.
[11] Z. Qu et al., “Temperature forecasting of grain in storage: A multi-output and spatiotemporal approach based on deep learning,” Comput. Electron. Agric., vol. 208, p. 107785, May 2023, doi: 10.1016/j.compag.2023.107785.
[12] R. Rakholia, Q. Le, B. Quoc Ho, K. Vu, and R. Simon Carbajo, “Multi-output machine learning model for regional air pollution forecasting in Ho Chi Minh City, Vietnam,” Environ. Int., vol. 173, p. 107848, Mar. 2023, doi: 10.1016/j.envint.2023.107848.
[13] A. Thakkar and K. Chaudhari, “Predicting stock trend using an integrated term frequency–inverse document frequency-based feature weight matrix with neural networks,” Appl. Soft Comput., vol. 96, p. 106684, Nov. 2020, doi: 10.1016/j.asoc.2020.106684.
[14] G. Ding and L. Qin, “Study on the prediction of stock price based on the associated network model of LSTM,” Int. J. Mach. Learn. Cybern., vol. 11, no. 6, pp. 1307–1317, Jun. 2020, doi: 10.1007/s13042-019-01041-1.
[15] J. Silva et al., “An Early Warning Method for Agricultural Products Price Spike Based on Artificial Neural Networks Prediction,” in Lecture Notes in Computer Science, 2019, pp. 622–632, doi: 10.1007/978-3-030-22741-8_44.
[16] S. Mishra, C. Bordin, K. Taharaguchi, and I. Palu, “Comparison of deep learning models for multivariate prediction of time series wind power generation and temperature,” Energy Reports, vol. 6, pp. 273–286, Feb. 2020, doi: 10.1016/j.egyr.2019.11.009.
[17] C. V. Hudiyanti, J. L. Buliali, and A. Saikhu, “Modelling MIMO Transfer Functions for Analysis of The Relationship Between Temperature and Air Humidity with the Number of Confirmation, Suspect and Probable COVID-19 in Surabaya,” in 2021 International Conference on Artificial Intelligence and Computer Science Technology (ICAICST), Jun. 2021, pp. 246–251, doi: 10.1109/ICAICST53116.2021.9497836.
[18] H. Rodriguez, M. Medrano, L. M. Rosales, G. P. Penunuri, and J. J. Flores, “Multi-step forecasting strategies for wind speed time series,” in 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Nov. 2020, pp. 1–6, doi: 10.1109/ROPEC50909.2020.9258743.
[19] P. Hewage et al., “Temporal convolutional neural (TCN) network for an effective weather forecasting using time-series data from the local weather station,” Soft Comput., vol. 24, no. 21, pp. 16453–16482, Nov. 2020, doi: 10.1007/s00500-020-04954-0.
[20] A. Alzaghir, A. R. Abdellah, and A. Koucheryavy, “Predicting Energy Consumption for UAV-Enabled MEC Using Machine Learning Algorithm,” in Lecture Notes in Computer Science, 2022, pp. 297–309, doi: 10.1007/978-3-030-97777-1_25.
[21] D. Saxena, I. Gupta, A. K. Singh, and C.-N. Lee, “A Fault Tolerant Elastic Resource Management Framework Toward High Availability of Cloud Services,” IEEE Trans. Netw. Serv. Manag., vol. 19, no. 3, pp. 3048–3061, Sep. 2022, doi: 10.1109/TNSM.2022.3170379.
[22] J.-J. Zhang and H.-S. Yan, “MTN optimal control of MIMO non-affine nonlinear time-varying discrete systems for tracking only by output feedback,” J. Franklin Inst., vol. 356, no. 8, pp. 4304–4334, May 2019, doi: 10.1016/j.jfranklin.2019.03.008.
[23] T. Niu, J. Wang, H. Lu, and P. Du, “Uncertainty modeling for chaotic time series based on optimal multi-input multi-output architecture: Application to offshore wind speed,” Energy Convers. Manag., vol. 156, pp. 597–617, Jan. 2018, doi: 10.1016/j.enconman.2017.11.071.
[24] P. Lara-Benítez, L. Gallego-Ledesma, M. Carranza-García, and J. M. Luna-Romera, “Evaluation of the Transformer Architecture for Univariate Time Series Forecasting,” in Lecture Notes in Computer Science, 2021, pp. 106–115, doi: 10.1007/978-3-030-85713-4_11.
[25] C. Yin and Q. Dai, “A deep multivariate time series multistep forecasting network,” Appl. Intell., vol. 52, no. 8, pp. 8956–8974, Jun. 2022, doi: 10.1007/s10489-021-02899-x.
[26] Z. Wu, G. Luo, Z. Yang, Y. Guo, K. Li, and Y. Xue, “A comprehensive review on deep learning approaches in wind forecasting applications,” CAAI Trans. Intell. Technol., vol. 7, no. 2, pp. 129–143, Jun. 2022, doi: 10.1049/cit2.12076.
[27] H. Huang, Y. Wang, Y. Li, Y. Zhou, and Z. Zeng, “Debris-Flow Susceptibility Assessment in China: A Comparison between Traditional Statistical and Machine Learning Methods,” Remote Sens., vol. 14, no. 18, p. 4475, Sep. 2022, doi: 10.3390/rs14184475.
[28] A. Truchot et al., “Machine learning does not outperform traditional statistical modelling for kidney allograft failure prediction,” Kidney Int., vol. 103, no. 5, pp. 936–948, May 2023, doi: 10.1016/j.kint.2022.12.011.
[29] M. Sousa, A. M. Tomé, and J. Moreira, “Long-term forecasting of hourly retail customer flow on intermittent time series with multiple seasonality,” Data Sci. Manag., vol. 5, no. 3, pp. 137–148, Sep. 2022, doi: 10.1016/j.dsm.2022.07.002.
[30] A. L. Schaffer, T. A. Dobbins, and S.-A. Pearson, “Interrupted time series analysis using autoregressive integrated moving average (ARIMA) models: a guide for evaluating large-scale health interventions,” BMC Med. Res. Methodol., vol. 21, no. 1, p. 58, Dec. 2021, doi: 10.1186/s12874-021-01235-8.
[31] H. Taud and J. F. Mas, “Multilayer Perceptron (MLP),” in Lecture Notes in Geoinformation and Cartography, 2018, pp. 451–455, doi: 10.1007/978-3-319-60801-3_27.
[32] B. Cai et al., “Resilience evaluation methodology of engineering systems with dynamic-Bayesian-network-based degradation and maintenance,” Reliab. Eng. Syst. Saf., vol. 209, p. 107464, May 2021, doi: 10.1016/j.ress.2021.107464.
[33] R. Reichenberg, “Dynamic Bayesian Networks in Educational Measurement: Reviewing and Advancing the State of the Field,” Appl. Meas. Educ., vol. 31, no. 4, pp. 335–350, Oct. 2018, doi: 10.1080/08957347.2018.1495217.
[34] A. Safari and M. Davallou, “Oil price forecasting using a hybrid model,” Energy, vol. 148, pp. 49–58, Apr. 2018, doi: 10.1016/j.energy.2018.01.007.
[35] T. Kattenborn, J. Leitloff, F. Schiefer, and S. Hinz, “Review on Convolutional Neural Networks (CNN) in vegetation remote sensing,” ISPRS J. Photogramm. Remote Sens., vol. 173, pp. 24–49, Mar. 2021, doi: 10.1016/j.isprsjprs.2020.12.010.
[36] J. Lu, L. Tan, and H. Jiang, “Review on Convolutional Neural Network (CNN) Applied to Plant Leaf Disease Classification,” Agriculture, vol. 11, no. 8, p. 707, Jul. 2021, doi: 10.3390/agriculture11080707.
[37] R. Chauhan, K. K. Ghanshala, and R. . Joshi, “Convolutional Neural Network (CNN) for Image Detection and Recognition,” in 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), Dec. 2018, pp. 278–282, doi: 10.1109/ICSCCC.2018.8703316.
[38] I. E. Livieris, N. Kiriakidou, S. Stavroyiannis, and P. Pintelas, “An Advanced CNN-LSTM Model for Cryptocurrency Forecasting,” Electronics, vol. 10, no. 3, p. 287, Jan. 2021, doi: 10.3390/electronics10030287.
[39] T. Fischer and C. Krauss, “Deep learning with long short-term memory networks for financial market predictions,” Eur. J. Oper. Res., vol. 270, no. 2, pp. 654–669, Oct. 2018, doi: 10.1016/j.ejor.2017.11.054.
[40] S. Ghimire, Z. M. Yaseen, A. A. Farooque, R. C. Deo, J. Zhang, and X. Tao, “Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks,” Sci. Rep., vol. 11, no. 1, p. 17497, Sep. 2021, doi: 10.1038/s41598-021-96751-4.
[41] N. Q. K. Le, E. K. Y. Yapp, and H.-Y. Yeh, “ET-GRU: using multi-layer gated recurrent units to identify electron transport proteins,” BMC Bioinformatics, vol. 20, no. 1, p. 377, Dec. 2019, doi: 10.1186/s12859-019-2972-5.
[42] A.-N. Buturache and S. Stancu, “Solar Energy Production Forecast Using Standard Recurrent Neural Networks, Long Short-Term Memory, and Gated Recurrent Unit,” Eng. Econ., vol. 32, no. 4, pp. 313–324, Oct. 2021, doi: 10.5755/j01.ee.32.4.28459.
[43] H. V. Bitencourt, O. Orang, L. A. F. de Souza, P. C. L. Silva, and F. G. Guimarães, “An embedding-based non-stationary fuzzy time series method for multiple output high-dimensional multivariate time series forecasting in IoT applications,” Neural Comput. Appl., vol. 35, no. 13, pp. 9407–9420, May 2023, doi: 10.1007/s00521-022-08120-5.
[44] U. Kamath, J. Liu, and J. Whitaker, “Convolutional Neural Networks,” in Deep Learning for NLP and Speech Recognition, Cham: Springer International Publishing, 2019, pp. 263–314, doi: 10.1007/978-3-030-14596-5_6.
[45] K. Sekaran, P. Chandana, N. M. Krishna, and S. Kadry, “Deep learning convolutional neural network (CNN) With Gaussian mixture model for predicting pancreatic cancer,” Multimed. Tools Appl., vol. 79, no. 15–16, pp. 10233–10247, Apr. 2020, doi: 10.1007/s11042-019-7419-5.
[46] S. Fan, N. Xiao, and S. Dong, “A novel model to predict significant wave height based on long short-term memory network,” Ocean Eng., vol. 205, p. 107298, Jun. 2020, doi: 10.1016/j.oceaneng.2020.107298.
[47] G. Kumar, S. Jain, and U. P. Singh, “Stock Market Forecasting Using Computational Intelligence: A Survey,” Arch. Comput. Methods Eng., vol. 28, no. 3, pp. 1069–1101, May 2021, doi: 10.1007/s11831-020-09413-5.
[48] S. Carta, A. Ferreira, A. S. Podda, D. Reforgiato Recupero, and A. Sanna, “Multi-DQN: An ensemble of Deep Q-learning agents for stock market forecasting,” Expert Syst. Appl., vol. 164, p. 113820, Feb. 2021, doi: 10.1016/j.eswa.2020.113820.
[49] Y. Kumar, A. Koul, S. Kaur, and Y.-C. Hu, “Machine Learning and Deep Learning Based Time Series Prediction and Forecasting of Ten Nations’ COVID-19 Pandemic,” SN Comput. Sci., vol. 4, no. 1, p. 91, Dec. 2022, doi: 10.1007/s42979-022-01493-3.
[50] A. P. Wibawa, I. T. Saputra, A. B. P. Utama, W. Lestari, and Z. N. Izdihar, “Long Short-Term Memory to Predict Unique Visitors of an Electronic Journal,” in 2020 6th International Conference on Science in Information Technology (ICSITech), Oct. 2020, pp. 176–179, doi: 10.1109/ICSITech49800.2020.9392031.
[51] A. P. Wibawa, A. B. P. Utama, H. Elmunsyah, U. Pujianto, F. A. Dwiyanto, and L. Hernandez, “Time-series analysis with smoothed Convolutional Neural Network,” J. Big Data, vol. 9, no. 1, p. 44, Dec. 2022, doi: 10.1186/s40537-022-00599-y.
[52] A. R. F. Dewandra, A. P. Wibawa, U. Pujianto, A. B. P. Utama, and A. Nafalski, “Journal Unique Visitors Forecasting Based on Multivariate Attributes Using CNN,” Int. J. Artif. Intell. Res., vol. 6, no. 2, pp. 1-8, Jul. 2022, doi: 10.29099/ijair.v6i1.274.
[53] P. Dhruv and S. Naskar, “Image Classification Using Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN): A Review,” in Advances in Intelligent Systems and Computing, 2020, pp. 367–381, doi: 10.1007/978-981-15-1884-3_34.
[54] A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network,” Phys. D Nonlinear Phenom., vol. 404, p. 132306, Mar. 2020, doi: 10.1016/j.physd.2019.132306.
[55] A. W. Saputra, A. P. Wibawa, U. Pujianto, A. B. P. Utama, and A. Nafalski, “LSTM-based Multivariate Time-Series Analysis : A Case of Journal Visitors Forecasting,” Ilk. J. Ilm., vol. 14, no. 1, pp. 57–62, 2022, doi: 10.33096/ilkom.v14i1.1106.57-62.
[56] A. P. Wibawa, R. R. Ula, A. B. P. Utama, M. Y. Chuttur, A. Pranolo, and Haviluddin, “Forecasting e-Journal Unique Visitors using Smoothed Long Short-Term Memory,” in 2021 7th International Conference on Electrical, Electronics and Information Engineering (ICEEIE), Oct. 2021, pp. 609–613, doi: 10.1109/ICEEIE52663.2021.9616628.
[57] A. Pranolo, Y. Mao, A. P. Wibawa, A. B. P. Utama, and F. A. Dwiyanto, “Robust LSTM With Tuned-PSO and Bifold-Attention Mechanism for Analyzing Multivariate Time-Series,” IEEE Access, vol. 10, pp. 78423–78434, 2022, doi: 10.1109/ACCESS.2022.3193643.
[58] P. L. Seabe, C. R. B. Moutsinga, and E. Pindza, “Forecasting Cryptocurrency Prices Using LSTM, GRU, and Bi-Directional LSTM: A Deep Learning Approach,” Fractal Fract., vol. 7, no. 2, p. 203, Feb. 2023, doi: 10.3390/fractalfract7020203.
[59] A. Zeroual, F. Harrou, A. Dairi, and Y. Sun, “Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study,” Chaos, Solitons & Fractals, vol. 140, p. 110121, Nov. 2020, doi: 10.1016/j.chaos.2020.110121.
[60] G. Yigit and M. F. Amasyali, “Simple But Effective GRU Variants,” in 2021 International Conference on INnovations in Intelligent SysTems and Applications (INISTA), Aug. 2021, pp. 1–6, doi: 10.1109/INISTA52262.2021.9548535.
[61] J. Zhao, H. Qu, J. Zhao, H. Dai, and D. Jiang, “Spatiotemporal graph convolutional recurrent networks for traffic matrix prediction,” Trans. Emerg. Telecommun. Technol., vol. 31, no. 11, pp. 1-14, Nov. 2020, doi: 10.1002/ett.4056.
[62] A. B. P. Utama, A. P. Wibawa, Muladi, and A. Nafalski, “PSO based Hyperparameter tuning of CNN Multivariate Time-Series Analysis,” J. Online Inform., vol. 7, no. 2, pp. 193–202, 2022, doi: 10.15575/join.v7i2.858.
[63] Y. Mao, A. Pranolo, A. P. Wibawa, A. B. Putra Utama, F. A. Dwiyanto, and S. Saifullah, “Selection of Precise Long Short Term Memory (LSTM) Hyperparameters based on Particle Swarm Optimization,” in 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC), May 2022, pp. 1114–1121, doi: 10.1109/ICAAIC53929.2022.9792708.
[64] A. P. Wibawa, Z. N. Izdihar, A. B. P. Utama, L. Hernandez, and Haviluddin, “Min-Max Backpropagation Neural Network to Forecast e-Journal Visitors,” in 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Apr. 2021, pp. 052–058, doi: 10.1109/ICAIIC51459.2021.9415197.
[65] M. Alhussein, K. Aurangzeb, and S. I. Haider, “Hybrid CNN-LSTM Model for Short-Term Individual Household Load Forecasting,” IEEE Access, vol. 8, pp. 180544–180557, 2020, doi: 10.1109/ACCESS.2020.3028281.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571 (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
andri.pranolo.id@ieee.org (publication issues)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0