Type-2 Fuzzy ANP and TOPSIS methods based on trapezoid Fuzzy number with a new metric

(1) * Yeni Kustiyahningsih Mail (University of Trunojoyo Madura, Indonesia)
(2) Eza Rahmanita Mail (University of Trunojoyo Madura, Indonesia)
(3) Bain Khusnul Khotimah Mail (University of Trunojoyo Madura, Indonesia)
(4) Jaka Purnama Mail (University of 17 Agustus 1945, Indonesia)
*corresponding author

Abstract


Modeling and linguistic representation in the form Interval Type-2 Fuzzy have better accuracy than Type-1 Fuzzy. The type-2 fuzzy set involves more uncertainty than the type-1 fuzzy set. The degree of fuzzy membership is used to explain uncertainty and ambiguity in the real world. This study presents the type-2 Fuzzy Analytic Network Process (ANP) method to determine the weight of each attribute based on the level of interest and the extension method of type-2 Fuzzy TOPSIS to handle problems based on the value of the fuzzy type-2 attribute. Decision-making is based on the assessment of several experts called Multi-Criteria Group Decision Making (MCGDM), using type-2 Fuzzy geometric mean aggregation function. The membership function in this research is type-2 fuzzy based on the trapezoid. The contribution is a hybrid method Type-2 Fuzzy TOPSIS with Fuzzy Type-2 ANP group-based with new metric intervals on fuzzy type-2 for decision making. The results are a hybrid type-2 FANP and FTOPSIS decision-making model to support the best decision-making. Based on a comparison of the accuracy of trapezoid model 1, model 2, and model 3, the best accuracy result is model 3, which is 84%. The research benefits by presenting a hybrid Type-2 Fuzzy TOPSIS and ANP method that improves decision-making accuracy and better handling uncertainty and ambiguity than Type-1 Fuzzy systems.

Keywords


FANP; FTOPSIS; Type-2 fuzzy; Batik SMEs; Multi-Criteria Group Decision Making

   

DOI

https://doi.org/10.26555/ijain.v10i2.1285
      

Article metrics

Abstract views : 218 | PDF views : 52

   

Cite

   

Full Text

Download

References


[1] Zadeh L. A., “The concept of a linguistic variable and its application to approximate reasoning-III,” Inf. Sci. (Ny)., vol. 9, no. 1, pp. 43–80, 1975, doi: 10.1016/0020-0255(75)90017-1.

[2] A. Sadeghi, “Success factors of high-tech SMEs in Iran: A fuzzy MCDM approach,” J. High Technol. Manag. Res., vol. 29, no. 1, pp. 71–87, 2018, doi: 10.1016/j.hitech.2018.04.007.

[3] V. G. Venkatesh, R. Dubey, P. Joy, M. Thomas, V. Vijeesh, and A. Moosa, “Supplier selection in blood bags manufacturing industry using TOPSIS model,” Int. J. Oper. Res., vol. 24, no. 4, pp. 461–488, 2015, doi: 10.1504/IJOR.2015.072725.

[4] K. Karuppiah, B. Sankaranarayanan, S. M. Ali, P. Chowdhury, and S. K. Paul, “An integrated approach to modeling the barriers in implementing green manufacturing practices in SMEs,” J. Clean. Prod., vol. 265, p. 121737, 2020, doi: 10.1016/j.jclepro.2020.121737.

[5] G. Büyüközkan and G. Ifi, “A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers,” Expert Syst. Appl., vol. 39, no. 3, pp. 3000–3011, 2012, doi: 10.1016/j.eswa.2011.08.162.

[6] Y. Kustiyahningsih and I. Q. H. Aini, “Integration of FAHP and COPRAS Method for New Student Admission Decision Making,” Proceeding - 2020 3rd Int. Conf. Vocat. Educ. Electr. Eng. Strength. Framew. Soc. 5.0 through Innov. Educ. Electr. Eng. Informatics Eng. ICVEE 2020, pp. 1-6, 2020, doi: 10.1109/ICVEE50212.2020.9243260.

[7] M. Tavana, F. Zandi, and M. N. Katehakis, “A hybrid fuzzy group ANP-TOPSIS framework for assessment of e-government readiness from a CiRM perspective,” Inf. Manag., vol. 50, no. 7, pp. 383–397, 2013, doi: 10.1016/j.im.2013.05.008.

[8] I. System and F. Engineering, “MCGDM with AHP based on Adaptive interval Value Fuzzy,” vol. 16, no. 1, pp. 314–322, 2018, doi: 10.12928/TELKOMNIKA.v16i1.7000.

[9] P. T. M. Ly, W. H. Lai, C. W. Hsu, and F. Y. Shih, “Fuzzy AHP analysis of Internet of Things (IoT) in enterprises,” Technol. Forecast. Soc. Change, vol. 136, no. July, pp. 1–13, 2018, doi: 10.1016/j.techfore.2018.08.016.

[10] Y. Kustiyahningsih, E. M. Sari, and D. L. Asih, “Blended Learning Quality Measurement System using Fuzzy Analytic Hierarchy Process Method,” no. Cesit 2020, pp. 200–206, 2021, doi: 10.5220/0010306102000206.

[11] M. Mansouri and C. Leghris, “A Use of Fuzzy TOPSIS to Improve the Network Selection in Wireless Multiaccess Environments,” J. Comput. Networks Commun., vol. 2020, no. Figure 1, pp. 1-12, 2020, doi: 10.1155/2020/3408326.

[12] E. Skondras, A. Sgora, and A. Michalas, “An analytic network process and trapezoidal interval-valued fuzzy technique for order preference by similarity to ideal solution network access selection method,” Int. J. Commun. Syst., pp. 1–23, 2014, doi: 10.1002/dac.

[13] M. A. Elleuch, M. Anane, J. Euchi, and A. Frikha, “Hybrid fuzzy multi-criteria decision making to solve the irrigation water allocation problem in the Tunisian case,” Agric. Syst., vol. 176, no. January, p. 102644, 2019, doi: 10.1016/j.agsy.2019.102644.

[14] M. Daǧdeviren, I. Yüksel, and M. Kurt, “A fuzzy analytic network process (ANP) model to identify faulty behavior risk (FBR) in work system,” Saf. Sci., vol. 46, no. 5, pp. 771–783, 2008, doi: 10.1016/j.ssci.2007.02.002.

[15] K. Kiracı and E. Akan, “Aircraft selection by applying AHP and TOPSIS in interval type-2 fuzzy sets,” J. Air Transp. Manag., vol. 89, no. September 2020, 2020, doi: 10.1016/j.jairtraman.2020.101924.

[16] C. F. Fuh, R. Jea, and J. S. Su, “Fuzzy system reliability analysis based on level (λ, 1) interval-valued fuzzy numbers,” Inf. Sci. (Ny)., vol. 272, pp. 185–197, 2014, doi: 10.1016/j.ins.2014.02.106.

[17] B. Vahdani, H. Hadipour, and R. Tavakkoli-moghaddam, “Soft computing based on interval valued fuzzy ANP-A novel methodology,” pp. 1529–1544, 2012, doi: 10.1007/s10845-010-0457-5.

[18] M. Akram, A. Luqman, and C. Kahraman, “Hesitant Pythagorean fuzzy ELECTRE-II method for multi-criteria decision-making problems,” Appl. Soft Comput., vol. 108, p. 107479, 2021, doi: 10.1016/j.asoc.2021.107479.

[19] E. Celik and E. Akyuz, “An interval type-2 fuzzy AHP and TOPSIS methods for decision-making problems in maritime transportation engineering: The case of ship loader,” Ocean Eng., vol. 155, no. July 2016, pp. 371–381, 2018, doi: 10.1016/j.oceaneng.2018.01.039.

[20] A. Karaşan and C. Kahraman, “A novel intuitionistic fuzzy DEMATEL - ANP - TOPSIS integrated methodology for freight village location selection,” J. Intell. Fuzzy Syst., vol. 36, no. 2, pp. 1335–1352, 2019, doi: 10.3233/JIFS-17169.

[21] C. Kahraman, B. Öztayşi, I. Uçal Sari, and E. Turanoǧlu, “Fuzzy analytic hierarchy process with interval type-2 fuzzy sets,” Knowledge-Based Syst., vol. 59, pp. 48–57, 2014, doi: 10.1016/j.knosys.2014.02.001.

[22] M. Amiri, M. Hashemi-Tabatabaei, M. Ghahremanloo, M. Keshavarz-Ghorabaee, E. K. Zavadskas, and J. Antucheviciene, “A new fuzzy approach based on BWM and fuzzy preference programming for hospital performance evaluation: A case study,” Appl. Soft Comput. J., vol. 92, p. 106279, 2020, doi: 10.1016/j.asoc.2020.106279.

[23] M. N. Mokhtarian, “A note on ‘extension of fuzzy TOPSIS method based on interval-valued fuzzy sets,’” Appl. Soft Comput. J., vol. 26, pp. 513–514, 2015, doi: 10.1016/j.asoc.2014.10.013.

[24] M. N. Mokhtarian, “A note on ‘extension of fuzzy TOPSIS method based on interval-valued fuzzy sets,’” Appl. Soft Comput. J., vol. 26, no. October, pp. 513–514, 2015, doi: 10.1016/j.asoc.2014.10.013.

[25] T. Wu, X. Liu, J. Qin, and F. Herrera, “An interval type-2 fuzzy Kano-prospect-TOPSIS based QFD model: Application to Chinese e-commerce service design,” Appl. Soft Comput., vol. 111, p. 107665, 2021, doi: 10.1016/j.asoc.2021.107665.

[26] Y. Kustiyahningsih, Fatmawati, and H. Suprajitno, “MCGDM with AHP based on Adaptive interval Value Fuzzy,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 16, no. 1, pp. 314–322, 2018, doi: 10.12928/TELKOMNIKA.v16i1.7000.

[27] R. H. Ramdlon, E. Martiana Kusumaningtyas, and T. Karlita, “Brain Tumor Classification Using MRI Images with K-Nearest Neighbor Method,” IES 2019 - Int. Electron. Symp. Role Techno-Intelligence Creat. an Open Energy Syst. Towar. Energy Democr. Proc., pp. 660–667, 2019, doi: 10.1109/ELECSYM.2019.8901560.

[28] Y. Kustiyahningsih, “Integration interval type-2 fahp-ftopsis group decision- making problems for salt farmer recommendation,” Commun. Math. Biol. Neurosci., vol. 2021, no. 92, pp. 1–25, 2021. [Online]. Available at: https://scik.org/index.php/cmbn/article/view/6930.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571  (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
   andri.pranolo.id@ieee.org (publication issues)

View IJAIN Stats

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0