
(2) Anindya Wirasatriya

(3) Lutfan Lazuardi

(4) Adi Wibowo

(5) I Ketut Agung Enriko

(6) Wei Hong Chin

(7) Naoyuki Kubota

*corresponding author
AbstractAccurate and reliable relative humidity forecasting is important when evaluating the impacts of climate change on humans and ecosystems. However, the complex interactions among geophysical parameters are challenging and may result in inaccurate weather forecasting. This study combines long short-term memory (LSTM) and extreme learning machines (ELM) to create a hybrid model-based forecasting technique to predict relative humidity to improve the accuracy of forecasts. Detailed experiments with univariate and multivariate problems were conducted, and the results show that LSTM-ELM and ELM-LSTM have the lowest MAE and RMSE results compared to stand-alone LSTM and ELM for the univariate problem. In addition, LSTM-ELM and ELM-LSTM result in lower computation time than stand-alone LSTM. The experiment results demonstrate that the proposed hybrid models outperform the comparative methods in relative humidity forecasting. We employed the recursive feature elimination (RFE) method and showed that dewpoint temperature, temperature, and wind speed are the factors that most affect relative humidity. A higher dewpoint temperature indicates more air moisture, equating to high relative humidity. Humidity levels also rise as the temperature rises.
KeywordsBig data analytics; Relative humidity; Time series forecasting; LSTM; ELM
|
DOIhttps://doi.org/10.26555/ijain.v9i3.905 |
Article metricsAbstract views : 600 | PDF views : 176 |
Cite |
Full Text![]() |
References
[1] M. G. Lawrence, “The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications,†Bull. Am. Meteorol. Soc., vol. 86, no. 2, pp. 225–234, Feb. 2005, doi: 10.1175/BAMS-86-2-225.
[2] J. Park, W. Son, Y. Ryu, S. B. Choi, O. Kwon, and I. Ahn, “Effects of temperature, humidity, and diurnal temperature range on influenza incidence in a temperate region,†Influenza Other Respi. Viruses, vol. 14, no. 1, pp. 11–18, Jan. 2020, doi: 10.1111/irv.12682.
[3] A. C. Lowen, S. Mubareka, J. Steel, and P. Palese, “Influenza Virus Transmission Is Dependent on Relative Humidity and Temperature,†PLoS Pathog., vol. 3, no. 10, p. e151, Oct. 2007, doi: 10.1371/journal.ppat.0030151.
[4] P. Mecenas, R. T. da R. M. Bastos, A. C. R. Vallinoto, and D. Normando, “Effects of temperature and humidity on the spread of COVID-19: A systematic review,†PLoS One, vol. 15, no. 9, p. e0238339, Sep. 2020, doi: 10.1371/journal.pone.0238339.
[5] Y. Wu et al., “Effects of temperature and humidity on the daily new cases and new deaths of COVID-19 in 166 countries,†Sci. Total Environ., vol. 729, p. 139051, Aug. 2020, doi: 10.1016/j.scitotenv.2020.139051.
[6] C. D. Ahrens and R. Henson, “Meteorology Today: An Introduction to Weather, Climate, and the Environment,†p. 599, 2016. [Online]. Available at: https://www.vliz.be/en/imis?module=ref&refid=316658.
[7] K. Qadeer, A. Ahmad, M. A. Qyyum, A.-S. Nizami, and M. Lee, “Developing machine learning models for relative humidity prediction in air-based energy systems and environmental management applications,†J. Environ. Manage., vol. 292, p. 112736, Aug. 2021, doi: 10.1016/j.jenvman.2021.112736.
[8] X. Ren et al., “Deep Learning-Based Weather Prediction: A Survey,†Big Data Res., vol. 23, p. 100178, Feb. 2021, doi: 10.1016/j.bdr.2020.100178.
[9] L. Li and Y. Zha, “Mapping relative humidity, average and extreme temperature in hot summer over China,†Sci. Total Environ., vol. 615, pp. 875–881, Feb. 2018, doi: 10.1016/j.scitotenv.2017.10.022.
[10] H. Li, Y. Yang, Y. Cheng, Y. Jin, H. Luo, and L. Zhang, “Application of Time Series Model in Relative Humidity Prediction,†J. Phys. Conf. Ser., vol. 1584, no. 1, p. 012017, Jul. 2020, doi: 10.1088/1742-6596/1584/1/012017.
[11] R. Khatibi, L. Naghipour, M. A. Ghorbani, and M. T. Aalami, “Predictability of relative humidity by two artificial intelligence techniques using noisy data from two Californian gauging stations,†Neural Comput. Appl., vol. 23, no. 7–8, pp. 2241–2252, Dec. 2013, doi: 10.1007/s00521-012-1175-z.
[12] S. AlSadi and T. Khatib, “Modeling of Relative Humidity Using Artificial Neural Network,†Asian Econ. Soc. Soc., vol. 66, no. 2, pp. 81–86, 2012, [Online]. Available at: https://app.ptuk.edu.ps/PTUK-stuff/UploadsPublications/Research_80261_Modeling of Relative.pdf.
[13] H. L. Fidler, “Incubator Humidity,†Adv. Neonatal Care, vol. 11, no. 3, pp. 197–199, Jun. 2011, doi: 10.1097/ANC.0b013e31821d0074.
[14] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,†Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.
[15] A. K. Sharma, V. Prasad, R. Kumar, and A. Sharma, “Analysis on the Occurrence of Tropical Cyclone in the South Pacific Region Using Recurrent Neural Network with LSTM,†in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11301 LNCS, Springer Verlag, 2018, pp. 476–486, doi: 10.1007/978-3-030-04167-0_43.
[16] Kurnianingsih, A. Wirasatriya, L. Lazuardi, N. Kubota, and N. Ng, “IOD and ENSO-Related Time Series Variability and Forecasting of Dengue and Malaria Incidence in Indonesia,†in 2020 International Symposium on Community-centric Systems (CcS), Sep. 2020, pp. 1–8, doi: 10.1109/CcS49175.2020.9231358.
[17] D. Kreuzer, M. Munz, and S. Schlüter, “Short-term temperature forecasts using a convolutional neural network — An application to different weather stations in Germany,†Mach. Learn. with Appl., vol. 2, p. 100007, Dec. 2020, doi: 10.1016/j.mlwa.2020.100007.
[18] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew, “Extreme learning machine: a new learning scheme of feedforward neural networks,†in 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), 2004, vol. 2, pp. 985–990, doi: 10.1109/IJCNN.2004.1380068.
[19] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory and applications,†Neurocomputing, vol. 70, no. 1–3, pp. 489–501, Dec. 2006, doi: 10.1016/j.neucom.2005.12.126.
[20] L. Oneto, F. Bisio, E. Cambria, and D. Anguita, “Statistical Learning Theory and ELM for Big Social Data Analysis,†IEEE Comput. Intell. Mag., vol. 11, no. 3, pp. 45–55, Aug. 2016, doi: 10.1109/MCI.2016.2572540.
[21] G. Song and Q. Dai, “A novel double deep ELMs ensemble system for time series forecasting,†Knowledge-Based Syst., vol. 134, pp. 31–49, Oct. 2017, doi: 10.1016/j.knosys.2017.07.014.
[22] Z. Wang, L. Sui, J. Xin, L. Qu, and Y. Yao, “A Survey of Distributed and Parallel Extreme Learning Machine for Big Data,†IEEE Access, vol. 8, pp. 201247–201258, 2020, doi: 10.1109/ACCESS.2020.3035398.
[23] A. A. Abdoos, “A new intelligent method based on combination of VMD and ELM for short term wind power forecasting,†Neurocomputing, vol. 203, pp. 111–120, Aug. 2016, doi: 10.1016/j.neucom.2016.03.054.
[24] H. Liu, X. Mi, and Y. Li, “Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM,†Energy Convers. Manag., vol. 159, pp. 54–64, Mar. 2018, doi: 10.1016/j.enconman.2018.01.010.
[25] H. Hersbach et al., “The ERA5 global reanalysis,†Q. J. R. Meteorol. Soc., vol. 146, no. 730, pp. 1999–2049, Jul. 2020, doi: 10.1002/qj.3803.
[26] D. P. Kingma and J. L. Ba, “Adam: A Method for Stochastic Optimization,†3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. International Conference on Learning Representations, ICLR, pp. 1–15, Dec. 22, 2014. [Online]. Available at: https://arxiv.org/abs/1412.6980v9.
[27] P. M. Granitto, C. Furlanello, F. Biasioli, and F. Gasperi, “Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products,†Chemom. Intell. Lab. Syst., vol. 83, no. 2, pp. 83–90, Sep. 2006, doi: 10.1016/j.chemolab.2006.01.007.
[28] B. H. Menze et al., “A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data,†BMC Bioinformatics, vol. 10, no. 1, p. 213, Dec. 2009, doi: 10.1186/1471-2105-10-213.
[29] D.-Z. Sun and A. H. Oort, “Humidity–Temperature Relationships in the Tropical Troposphere,†J. Clim., vol. 8, no. 8, pp. 1974–1987, Aug. 1995, doi: 10.1175/1520-0442(1995)008<1974:HRITTT>2.0.CO;2.
[30] L. Yu, “Global Variations in Oceanic Evaporation (1958–2005): The Role of the Changing Wind Speed,†J. Clim., vol. 20, no. 21, pp. 5376–5390, Nov. 2007, doi: 10.1175/2007JCLI1714.1.
[31] I. Alifdini, T. Shimada, and A. Wirasatriya, “Seasonal distribution and variability of surface winds in the Indonesian seas using scatterometer and reanalysis data,†Int. J. Climatol., vol. 41, no. 10, pp. 4825–4843, Aug. 2021, doi: 10.1002/joc.7101.
[32] C.-P. Chang, Z. Wang, J. McBride, and C.-H. Liu, “Annual Cycle of Southeast Asia—Maritime Continent Rainfall and the Asymmetric Monsoon Transition,†J. Clim., vol. 18, no. 2, pp. 287–301, Jan. 2005, doi: 10.1175/JCLI-3257.1.
[33] C.-P. Chang, Z. Wang, and H. Hendon, “The Asian winter monsoon,†in The Asian Monsoon, Springer Berlin Heidelberg, 2006, pp. 89–127, doi: 10.1007/3-540-37722-0_3.
[34] M. L. Griffiths et al., “Increasing Australian–Indonesian monsoon rainfall linked to early Holocene sea-level rise,†Nat. Geosci., vol. 2, no. 9, pp. 636–639, Sep. 2009, doi: 10.1038/ngeo605.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571 (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
andri.pranolo.id@ieee.org (publication issues)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0