*corresponding author
AbstractHistogram equalization is essential for low-contrast enhancement in image processing. Several methods have been proposed; however, one of the most critical problems encountered by existing methods is their ability to preserve information in the enhanced image as the original. This research proposes an image enhancement method based on a histogram equalization approach that preserves the entropy and fine details similar to those of the original image. This is achieved through proposed probability density functions (PDFs) that preserve the small gray values of the usual PDF. The method consists of several steps. First, occurrences and clipped histograms are extracted according to the proposed thresholding. Then, they are equalized and used by a proposed transferring function to calculate the new pixel values in the enhanced image. The proposed method is compared with widely used methods such as Clahe, CS, HE, and GTSHE. Experiments using benchmark datasets and entropy, contrast, PSNR, and SSIM measurements are conducted to evaluate the performance. The results show that the proposed method is the only one that preserves the entropy of the enhanced image of the original image. In addition, it is efficient and reliable in enhancing image quality. This method preserves fine details and improves image quality, supporting computer vision and pattern recognition fields.
KeywordsEntropy; histogram equalization; image processing; image enhancement; low contrast enhancement.
|
DOIhttps://doi.org/10.26555/ijain.v9i2.907 |
Article metricsAbstract views : 870 | PDF views : 296 |
Cite |
Full TextDownload |
References
[1] Y. Wang, R. Wan, W. Yang, H. Li, L.-P. Chau, and A. Kot, “Low-light image enhancement with normalizing flow,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2022, vol. 36, no. 3, pp. 2604–2612. doi : 10.1609/aaai.v36i3.20162.
[2] A. K. Bhandari, S. Shahnawazuddin, and A. K. Meena, “A Novel Fuzzy Clustering-Based Histogram Model for Image Contrast Enhancement,” IEEE Trans. Fuzzy Syst., vol. 28, no. 9, pp. 2009–2021, 2020, doi: 10.1109/TFUZZ.2019.2930028.
[3] D. C. Prakash, R. C. Narayanan, N. Ganesh, M. Ramachandran, S. Chinnasami, and R. Rajeshwari, “A study on image processing with data analysis,” in AIP Conference Proceedings, 2022, vol. 2393, no. 1, p. 20225, doi : 10.1063/5.0074764.
[4] T. Rahman et al., “Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images,” Comput. Biol. Med., vol. 132, p. 104319, 2021, doi : 10.1016/j.compbiomed.2021.104319.
[5] C. R. Nithyananda, A. C. Ramachandra, and Preethi, “Review on Histogram Equalization based Image Enhancement Techniques,” Int. Conf. Electr. Electron. Optim. Tech. ICEEOT 2016, pp. 2512–2517, 2016, doi: 10.1109/ICEEOT.2016.7755145.
[6] F. Lv, Y. Li, and F. Lu, “Attention Guided Low-Light Image Enhancement with a Large Scale Low-Light Simulation Dataset,” Int. J. Comput. Vis., vol. 129, no. 7, pp. 2175–2193, 2021, doi: 10.1007/s11263-021-01466-8.
[7] S. Chi Liu et al., “Enhancement of Low Illumination Images based on an Optimal Hyperbolic Tangent Profile,” Comput. Electr. Eng., vol. 70, pp. 538–550, 2018, doi: 10.1016/j.compeleceng.2017.08.026.
[8] P. Paikrao, D. Doye, M. Bhalerao, and M. Vaidya, “A Combined Method for Document Image Enhancement Using Image Smoothing, Gray-Level Reduction and Thresholding,” in Advancements in Smart Computing and Information Security: First International Conference, ASCIS 2022, Rajkot, India, November 24–26, 2022, Revised Selected Papers, Part I, 2023, pp. 35–48, doi : 10.1007/978-3-031-23092-9_4.
[9] R. W. Ibrahim, H. A. Jalab, F. K. Karim, E. Alabdulkreem, and M. N. Ayub, “A medical image enhancement based on generalized class of fractional partial differential equations,” Quant. Imaging Med. Surg., vol. 12, no. 1, p. 172, 2022, doi : 10.21037/qims-21-15.
[10] M. Jian, X. Liu, H. Luo, X. Lu, H. Yu, and J. Dong, “Underwater image processing and analysis: A review,” Signal Process. Image Commun., vol. 91, p. 116088, 2021, doi: 10.1016/j.image.2020.116088.
[11] W. A. Mustafa and M. M. M. Abdul Kader, “Contrast Enhancement Based on Fusion Method: A Review,” J. Phys. Conf. Ser., vol. 1019, no. 1, 2018, doi: 10.1088/1742-6596/1019/1/012025.
[12] A. Asokan, D. E. Popescu, J. Anitha, and D. J. Hemanth, “Bat algorithm based non-linear contrast stretching for satellite image enhancement,” Geosci., vol. 10, no. 2, pp. 1–12, 2020, doi: 10.3390/geosciences10020078.
[13] M. Kanmani and V. Narasimhan, “Swarm intelligent based contrast enhancement algorithm with improved visual perception for color images,” Multimed. Tools Appl., vol. 77, no. 10, pp. 12701–12724, 2018, doi: 10.1007/s11042-017-4911-7.
[14] Q. C. Tian and L. D. Cohen, “A variational-based fusion model for non-uniform illumination image enhancement via contrast optimization and color correction,” Signal Processing, vol. 153, pp. 210–220, 2018, doi: 10.1016/j.sigpro.2018.07.022.
[15] H. Rahman and G. C. Paul, “Tripartite sub-image histogram equalization for slightly low contrast gray-tone image enhancement,” Pattern Recognit., vol. 134, p. 109043, 2023, doi : 10.1016/j.patcog.2022.109043.
[16] H. Singh, A. Kumar, L. K. Balyan, and G. K. Singh, “Swarm intelligence optimized piecewise gamma corrected histogram equalization for dark image enhancement,” Comput. Electr. Eng., vol. 70, pp. 462–475, 2018, doi : 10.1016/j.compeleceng.2017.06.029.
[17] H. Singh, A. Kumar, L. K. Balyan, and H.-N. Lee, “Optimally sectioned and successively reconstructed histogram sub-equalization based gamma correction for satellite image enhancement,” Multimed. Tools Appl., vol. 78, no. 14, pp. 20431–20463, 2019, doi : 10.1007/s11042-019-7383-0.
[18] S. Kansal, S. Purwar, and R. K. Tripathi, “Image contrast enhancement using unsharp masking and histogram equalization,” Multimed. Tools Appl., vol. 77, no. 20, pp. 26919–26938, 2018, doi: 10.1007/s11042-018-5894-8.
[19] J. Xiong et al., “Application of Histogram Equalization for Image Enhancement in Corrosion Areas,” Shock Vib., vol. 2021, 2021, doi: 10.1155/2021/8883571.
[20] P. Kandhway, A. K. Bhandari, and A. Singh, “A novel reformed histogram equalization based medical image contrast enhancement using krill herd optimization,” Biomed. Signal Process. Control, vol. 56, p. 101677, 2020, doi: 10.1016/j.bspc.2019.101677.
[21] K. G. Dhal, A. Das, S. Ray, J. Gálvez, and S. Das, “Histogram Equalization Variants as Optimization Problems: A Review,” Arch. Comput. Methods Eng., vol. 28, no. 3, pp. 1471–1496, 2021, doi: 10.1007/s11831-020-09425-1.
[22] V. S. Padmavathy and R. Priya, “Image contrast enhancement techniques-a survey,” Int. J. Eng. Technol., vol. 7, no. 2.33 Special Issue 33, pp. 466–469, 2018, doi: 10.14419/ijet.v7i1.1.10146.
[23] S. F. Tan and N. A. M. Isa, “Exposure based multi-histogram equalization contrast enhancement for non-uniform illumination images,” IEEE Access, vol. 7, pp. 70842–70861, 2019, doi : 10.1109/ACCESS.2019.2918557.
[24] Y. Huang, Y. Li, and Y. Zhang, “A Retinex image enhancement based on L channel illumination estimation and gamma function,” vol. 137, no. Jiaet, pp. 312–317, 2018, doi: 10.2991/jiaet-18.2018.55.
[25] W. Zhang, P. Zhuang, H.-H. Sun, G. Li, S. Kwong, and C. Li, “Underwater image enhancement via minimal color loss and locally adaptive contrast enhancement,” IEEE Trans. Image Process., vol. 31, pp. 3997–4010, 2022, doi : 10.1109/TIP.2022.3177129.
[26] C. Ding, L. Tang, L. Cao, X. Shao, W. Wang, and S. Deng, “Preprocessing of multi-line structured light image based on Radon transformation and gray-scale transformation,” Multimed. Tools Appl., vol. 80, no. 5, pp. 7529–7546, 2021, doi: 10.1007/s11042-019-08031-z.
[27] X. Fu, D. Zeng, Y. Huang, X. P. Zhang, and X. Ding, “A Weighted Variational Model for Simultaneous Reflectance and Illumination Estimation,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 2782–2790, 2016, doi: 10.1109/CVPR.2016.304.
[28] L. Florea, C. Florea, and C. Ionascu, “Avoiding the Deconvolution: Framework Oriented Color Transfer for Enhancing Low-Light Images,” IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work., pp. 936–944, 2016, doi: 10.1109/CVPRW.2016.121.
[29] B. Bataineh and K. H. Almotairi, “Enhancement Method for Color Retinal Fundus Images Based on Structural Details and Illumination Improvements,” Arab. J. Sci. Eng., vol. 46, no. 9, pp. 8121–8135, 2021, doi: 10.1007/s13369-021-05429-6.
[30] R. R. Hussein, Y. I. Hamodi, and R. A. Sabri, “Retinex theory for color image enhancement: A systematic review,” Int. J. Electr. Comput. Eng., vol. 9, no. 6, pp. 5560–5569, 2019, doi: 10.11591/ijece.v9i6.pp5560-5569.
[31] P. Li, F. Wang, Y. Liang, and X. Zhang, “Single Image Defogging Method Based on Adaptive Modified Dark Channel Value,” vol. 91, no. Msbda, pp. 148–153, 2019, doi: 10.2991/msbda-19.2019.23.
[32] M. N. Aziz, T. W. Purboyo, and A. L. Prasasti, “A survey on the implementation of image enhancement,” Int. J. Appl. Eng. Res., vol. 12, no. 21, pp. 11451–11459, 2017. Available at : Semanticscholar.
[33] D. Singh and V. Kumar, “Comprehensive survey on haze removal techniques,” Multimed. Tools Appl., vol. 77, no. 8, pp. 9595–9620, 2018, doi: 10.1007/s11042-017-5321-6.
[34] N. Dey, “Uneven illumination correction of digital images: A survey of the state-of-the-art,” Optik (Stuttg)., vol. 183, no. February, pp. 483–495, 2019, doi: 10.1016/j.ijleo.2019.02.118.
[35] R. C. Gonzalez and R. E. Woods, “Digital image processing.” Prentice hall Upper Saddle River, NJ, 2002. Available at: sdeuoc.ac.id.
[36] Q. Xu, H. Jiang, R. Scopigno, and M. Sbert, “A novel approach for enhancing very dark image sequences,” Signal Processing, vol. 103, pp. 309–330, 2014, doi: 10.1016/j.sigpro.2014.02.013.
[37] H. Yoon, Y. Han, and H. Hahn, “Image contrast enhancement based sub-histogram equalization technique without over-equalization noise,” World Acad. Sci. Eng. Technol., vol. 50, p. 2009, 2009. Available at : GoogleScholar.
[38] Y. Wang, Q. Chen, and B. Zhang, “Image enhancement based on equal area dualistic sub-image histogram equalization method,” IEEE Trans. Consum. Electron., vol. 45, no. 1, 1999, doi: 10.1109/30.754419.
[39] S. Der Chen and A. R. Ramli, “Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation,” IEEE Trans. Consum. Electron., vol. 49, no. 4, pp. 1301–1309, 2003, doi: 10.1109/TCE.2003.1261233.
[40] S. Der Chen and A. R. Ramli, “Minimum mean brightness error bi-histogram equalization in contrast enhancement,” IEEE Trans. Consum. Electron., vol. 49, no. 4, pp. 1310–1319, 2003, doi: 10.1109/TCE.2003.1261234.
[41] K. S. Sim, C. P. Tso, and Y. Y. Tan, “Recursive sub-image histogram equalization applied to gray scale images,” Pattern Recognit. Lett., vol. 28, no. 10, pp. 1209–1221, 2007, doi: 10.1016/j.patrec.2007.02.003.
[42] K. Singh and R. Kapoor, “Image enhancement using Exposure based Sub Image Histogram Equalization,” Pattern Recognit. Lett., vol. 36, no. 1, pp. 10–14, 2014, doi: 10.1016/j.patrec.2013.08.024.
[43] N. Singh, L. Kaur, and K. Singh, “Histogram equalization techniques for enhancement of low radiance retinal images for early detection of diabetic retinopathy,” Eng. Sci. Technol. an Int. J., vol. 22, no. 3, pp. 736–745, 2019, doi: 10.1016/j.jestch.2019.01.014.
[44] L. Zhuang and Y. Guan, “Image Enhancement via Subimage Histogram Equalization Based on Mean and Variance,” Comput. Intell. Neurosci., vol. 2017, 2017, doi: 10.1155/2017/6029892.
[45] J. R. Tang and N. A. Mat Isa, “Bi-histogram equalization using modified histogram bins,” Appl. Soft Comput. J., vol. 55, pp. 31–43, 2017, doi: 10.1016/j.asoc.2017.01.053.
[46] K. H. Almotairi, “A Global Two-Stage Histogram Equalization Method for Gray-Level Images.,” J. ICT Res. Appl., vol. 14, no. 2, 2020, doi : 10.5614/10.5614/itbj.ict.res.appl.2020.14.2.1.
[47] S. M. Pizer et al., “Adaptive histogram equalization and its variations,” Comput. vision, Graph. image Process., vol. 39, no. 3, pp. 355–368, 1987, doi : 10.1016/S0734-189X(87)80186-X.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571 (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
andri.pranolo.id@ieee.org (publication issues)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0