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1. Introduction 
Drug target interaction (DTI) refers to an interaction between a drug and a protein, known as a 

target or receptor, in the human body [1]. Understanding these interactions is essential in the drug 

development process [2]. According to Kim et al. [3], there are more than a million drug compounds 

that have the potential to become new or repurposed drugs. Meanwhile, the success rate in drug 

development from phase I clinical trials to therapeutic licensure was relatively low, at only 6.2% of 21,143 

compounds [4]. Therefore, accurate prediction of the DTI is an important part of drug development in 

finding candidate compounds at an early stage [5]. 

One approach to predict the DTI is conventional approaches conducted in the laboratory. 

Unfortunately, identifying drug and receptor interactions with such approaches is full of challenges, such 
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 Drug development requires accurate drug-target interaction (DTI) 

information to evaluate a drug's potential. However, existing current 

methods for estimating DTI are slow and expensive. Deep learning offers 

an efficient and effective alternative by leveraging sequence data for 

prediction. Nevertheless, the DTI binary classification approach suffers 

from a large number of non-interacting pairs, resulting in data imbalance 

and has a negative impact on performance. To address this issue, DTI is 

modeled as a regression problem known as drug-target affinity (DTA), 

which predicts the strength of interactions. While various deep learning 

methods show competitive results in DTA prediction, they face a challenge 

in capturing specific drug-target patterns with limited data. To overcome 

the problem, this study leverages pre-trained language models for enhanced 

representation. Also, we utilize gated multi-head attention (GMHA), 

which modifies multi-head attention by including dynamic scaling and a 

gate process to capture the mutual interactions better. The results show 

that our proposed method exceeds the benchmark and baseline in all 

evaluation metrics, with concordance index (CI) of 0.893 and 0.872, and 

modified r-squared (𝑟𝑟𝑚𝑚2) of 0.673 and 0.723 in Davis and KIBA. Our 

findings further suggest that pre-trained language models for drug and 

target receptor representation improve DTA prediction model 

performance. Also, the GMHA method generally outperforms the simple 

concatenation method, with more obvious advantages in more complex 

datasets like KIBA. Our approach provides a competitive enhancement in 

DTA prediction, suggesting a promising direction for further enhancing 

drug discovery and development processes.  
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as being time-consuming and cost-expensive [6]. One of the alternative methods for predicting drug 

and receptor interactions is by extracting sequence information from the drug and receptor and then 

using the information to recognize the relationship between the sequence and interactions of the drug 

and receptor. Recent studies highlight deep learning as a potential, cost-effective, and time-efficient 

method for modeling drug-receptor interactions, demonstrating significant success in addressing the 

complex, non-linear tasks frequently found in biological and chemical processes [7], [8]. 

Several studies have been performed to predict sequence-based drug and receptor interactions with 

deep learning by defining the task as a binary classification problem [9]–[11]. However, this approach 

has several limitations, such as the lack of experimental valid positive data and the abundance of 

unvalidated negative data. This approach defines the drug and receptor as having no interaction if the 

interaction data between them does not exist. However, the lack of interaction data does not guarantee 

no interaction between drug and receptor. As a result, negative data can be much more numerous, 

creating a significant class imbalance [12]. Similarly, when using benchmark datasets such as Davis and 

KIBA [13], [14], researchers defined affinity values above a threshold as interacting pairs [15]. This led 

to a significant volume of negative data and an imbalanced class distribution [9]. This condition has a 

negative impact on the performance of the prediction model. Furthermore, the affinity value that 

represents the strength of the drug-receptor interaction is known as continuous data [16]. Therefore, to 

address these issues, interactions between drugs and receptors should be defined as a regression problem. 

Hence, the prediction is conducted on the affinity value of the drug and receptor interaction, which is 

commonly called Drug Target Affinity (DTA). 

Several studies have been performed on sequence-based DTA prediction using deep learning. In 

2018, Ozturk et al. proposed DeepDTA, which uses CNN to model the SMILES representation of the 

drug and the amino acid sequence of the receptor. The results were evaluated using the concordance 

index (CI), which measures how well the model can rank relevant interaction pairs. The DeepDTA 

model showed good evaluation results with 87% and 86% CI values for the Davis and KIBA datasets, 

respectively [13]. Then, in 2019, Ozturk et al. also proposed WideDTA, a model similar to DeepDTA, 

except they added features besides SMILES and amino acid sequences, such as ligand max common 

substructure and protein motifs and domains. WideDTA increased the CI value of DeepDTA by one 

percent in both datasets [17]. In 2022, Ghimire et al. modified the CNN structure by inserting self-

attention and produced a CI score of 89% in both the Davis and KIBA datasets [18]. Another study was 

conducted by D'Souza et al. by building a DTA sequence-based prediction model with CNN by adding 

prior transformers to the drug representation, which resulted in a CI score of 86% [19]. Similar studies 

have been conducted by modifying the CNN architecture and adding features other than sequences, such 

as fingerprints, to improve the performance of DTA prediction models. In 2022, Chen et al. proposed 

MultiscaleDTA by utilizing multi-scale CNN and self-attention at each CNN layer. This model achieved 

a CI value of 89% on the Davis and KIBA datasets [20]. Meanwhile, in 2023, Zhu et al. [21] proposed 

FingerDTA, which enriches the representation of drugs and receptors by incorporating molecular 

fingerprints into their CNN model. This approach also performed well, with a CI value of 89% on the 

same dataset. 

Apart from the representation of drug and receptor, the inter-interaction or mutual interaction 

between drug and receptor is also important in predicting DTA. The aforementioned studies combine 

both representations only with a simple concatenation. This method overlooks the aspects of mutual 

interaction between drug and receptor representations [22]. In 2020, Abbasi et al. proposed DeepCDA, 

which uses CNN-LSTM as a representation method and a two-sided attention mechanism to achieve 

mutual interaction. This method resulted in competitive performance, with a CI value of 89% and an 

𝑟𝑟𝑚𝑚2  value of 64% [23]. In 2023, Zhao et al. conducted a similar study by proposing a two-sided attention 

mechanism to model mutual interactions, namely AttentionDTA, achieving an 𝑟𝑟2 value of 74% [14]. 

In 2021, another study by Zeng et al. took a different approach in using attention for mutual interactions, 

designating drug representations as queries and receptor representations as keys and values, resulting in 
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a CI of 89% [22]. In 2021, Mahdaddi et al. combined SMILES and amino acid sequences before 

processing them with a CNN-AbiLSTM model, resulting in a CI of 89% and an 𝑟𝑟𝑚𝑚2  value of 66% [12]. 

Although various approaches have been used to predict DTA, two main challenges remain in DTA 

prediction. First, models such as CNN, CNN-LSTM, and dense layers for representing drugs or 

receptors are still not effective in capturing specific patterns in drug and receptor sequences, mainly due 

to the complexity of molecular interactions and the high-dimensional nature of the data. Second, most 

mutual interaction methods only use simple concatenation without considering the specific mutual 

relationship between drug and receptor, which is also an important aspect of DTA [24]. As a result, 

model performance is still not optimal, which leads to room for improvement. Hence, exploring other 

methods for the representation of the drug and receptor and the mutual interaction model becomes 

necessary.  

Pre-trained language models (PLM), proven powerful in natural language processing (NLP), offer 

an alternative method for representing drugs and receptors [25]. Pre-trained models such as 

ChemBERTa-2 and ESM-2 can represent drug molecules on SMILES sequences and proteins on amino 

acids, respectively [26], [27]. Pre-trained models are useful because they allow the model to use the 

transferable information encoded in the weights that have been pre-trained with a large amount of data. 

ChemBERTa-2 was chosen because it was trained with a much larger SMILES dataset compared to 

other drug molecule PLM models, such as ChemBERTa-1 [28] and MolBERT [29], thus being able to 

capture molecular representations better. Besides the dataset size, ChemBERTa-2 also shows superior 

performance compared to ChemBERTa-1 in various SMILES data-driven tasks. In addition, 

ChemBERTa-2 uses SMILES data from PubChem, which corresponds to the notation used in this 

study's dataset, ensuring higher compatibility [26]. Meanwhile, ESM-2 was chosen because it has a more 

complex architecture and a much larger number of parameters than ProtBERT [27], [30], allowing this 

model to capture the biological features of amino acid sequences more effectively. In addition, ESM-2 

was trained using UniRef50, which is more diverse than UniRef100 used by ProtBERT [31], thus 

improving the generalization ability of the model in understanding receptor characteristics. Pre-trained 

models can represent sequences effectively, but they only focus on describing interactions within a 

sequence and ignore interactions between two different sequences, in this case, drug and receptor 

sequences. Therefore, a multi-head attention mechanism can be used to model the mutual interaction. 

According to the literature, the attention mechanism can observe the relationship between drugs and 

receptors simultaneously, thus enabling a more comprehensive understanding of the input data. 

This study aims to enhance DTA prediction by addressing two major challenges, which are the 

limitation of models in capturing the complexity of molecular interactions and the simple concatenation 

method that ignores the mutual interaction between the drug and the receptor. Therefore, this study 

implemented two pre-trained language models to obtain drug and receptor representations, 

ChemBERTa-2 and ESM-2, along with gated multi-head attention, specifically a gated two-sided multi-

head cross-attention mechanism (GMHA) to model the mutual interactions between drugs and 

receptors, allowing the model to simultaneously include within-sequence interactions and interactions 

between two different sequence types. In this study, GMHA differs from standard multi-head attention 

mechanisms that rely on fixed scaling by introducing a learnable parameter that makes the scaling process 

more flexible during training [32]. Also, we added a gate process inspired by the concept of the output 

gate in the study [33] at the end of the standard multi-head attention to control the proportion of the 

attention output and input embedding in the final result of GMHA. Finally, this study uses four fully 

connected layers to predict the DTA. 

2. Method 

2.1. Dataset 
This study used datasets commonly used in DTA prediction studies, namely the Davis and KIBA 

datasets [14]. Davis and KIBA datasets consist of drug ID, protein or receptor ID, canonical SMILES 
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sequence, amino acid sequence, and affinity value. The affinity value is a value that represents the strength 

of the interaction between the drug and the receptor. The measurement variable of the affinity value 

differs according to the dataset. In the KIBA dataset, affinity measurement is represented by KIBA 

scores, which statistically combine multiple affinity indicators, including half maximal inhibitory 

concentration (𝐼𝐼𝐼𝐼50), inhibition constant (𝐾𝐾𝑖𝑖), and dissociation constant (𝐾𝐾𝑑𝑑) [34]. On the other hand, 

the Davis dataset uses 𝐾𝐾𝑑𝑑 values to measure the affinity of the drug and receptor pair [35]. The Davis 

dataset contains 68 unique SMILES sequences and 365 unique amino acid sequences with 24,956 

interactions. Meanwhile, the KIBA dataset has 2068 unique SMILES sequences and 229 unique amino 

acid sequences with 118,254 interactions. The KIBA dataset contains more data, and the SMILES and 

amino acid sequences are longer than the Davis dataset. 

We performed data preprocessing before developing the DTA prediction model, such as removing 

missing values and duplicate data. Then, the affinity value (𝐾𝐾𝑑𝑑) of the Davis dataset is converted into log 

space (𝑝𝑝𝐾𝐾𝑑𝑑), as formulated in Eq. (1), to reduce the large variance inherent in these values. Next, the 

dataset was divided into train and test sets with a ratio of 80:20. The train set is used to build the DTA 

prediction model, while the test set is used to evaluate the model. 

𝑝𝑝𝐾𝐾𝑑𝑑 = −𝑙𝑙𝑙𝑙𝑙𝑙10 𝐾𝐾𝑑𝑑
109

   (1) 

2.2. DTA Prediction Model Framework 
The overall framework of our proposed method is illustrated in Fig. 1. The input data consists of 

SMILES sequences representing drugs and amino acid sequences representing receptors. The first step 

is the tokenization of both drug and receptor sequences. The tokenization process transforms the raw 

drug and receptor sequences into a suitable format that our model's subsequent components can process 

effectively. Then, the results are processed and sent forward to ChemBERTa-2 and ESM-2 encoder 

models to obtain meaningful embeddings of the drug (𝐸𝐸𝑑𝑑) and receptor (𝐸𝐸𝑟𝑟). The embeddings are vector 

representations of each drug or receptor. After obtaining the embeddings for both the drug and the 

receptor, we derived their respective representations.  

 

Fig. 1. Illustration of DTA prediction model framework 

The next step is defining the interaction model between the drug and the receptor using a gated 

two-sided multi-head cross-attention mechanism (GMHA). This attention mechanism lets the model 
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look at drug and receptor embeddings simultaneously, showing how they depend on and affect each 

other in complex ways. The final process involves feeding the result of the attention mechanism into a 

fully connected layer to predict the DTA. 

The first part of our proposed method framework consists of drug and receptor representation 

models. The drug and receptor structures were represented using ChemBERTa-2 and ESM-2, 

respectively. The ChemBERTa-2 is a pre-trained model that has been trained on a large dataset 

consisting of 77 million SMILES sequences to obtain molecular fingerprints, which is developed based 

on the RoBERTa model. ChemBERTa-2 has been demonstrated to improve the ability to capture 

nuanced chemical characteristics, resulting in greater performance across 6 of the 8 SMILES-based tasks. 

Furthermore, it exhibits high competitiveness in almost all tasks [26]. The ESM-2 model, similar to 

ChemBERTa-2, is a pre-trained model specifically designed for learning protein sequences. ESM-2 is a 

protein language model that has been pre-trained on the large Uniref50 and UniRef90 protein sequence 

datasets, which allows it to understand the complex interactions between proteins [27]. 

Each representation model consists of a tokenization process and an embedding vector generation 

process. In tokenization, all characters of each sequence are used by adding padding for sequences to 

make the length of a shorter sequence become similar to the length of the longest sequence in the data. 

The tokenizer in ChemBERTa-2 treats sequences as a series of hybrid between character and word-level 

representations. Therefore, a structure like “Cl” (chlorine) will be tokenized into “Cl”. Meanwhile, ESM-

2 treats sequences as a series of characters, so the amino acid sequence MKAV will be broken down into 

the characters “M”, “K”, “A”, and “V”. To illustrate the process, let us consider the SMILES sequence 

of "CC...)N" with a length of 55. Using the ChemBERTa-2 tokenizer, the sequence is represented as 

"12, 16, ..., 0, 0", where the first number represents the start of the sequence; the next numbers represent 

the SMILES sequence itself, and the number 0 represents padding since the longest SMILES sequence 

in the dataset is 92 in length. Similarly, the amino acid sequence is processed with the ESM-2 tokenizer. 

Suppose “MA...LQ” is an amino acid sequence of length 472. Then, after being processed, it is converted 

to "0, 20, …, 1, 1". The first number represents the start of the amino acid sequence, and the next 

number represents the amino acid sequence itself. Then, the number 1 represents padding since the 

longest amino acid in the dataset is 2549 in length. 

Following the tokenization process, the tokenized sequences move through the drug and receptor 

encoder models, leveraging the capabilities of ChemBERTa-2 and ESM-2, respectively. These models 

transform the tokenized sequences into embeddings of drugs and receptors. The embeddings capture 

complex patterns and correlations in the data by encapsulating the important information and properties 

of the drug and receptor sequences [36]. These embeddings capture the learned representation of each 

token using the model's pre-trained weights. The result is taken as the average value of all tokens to 

produce one feature vector that represents the entire compound or molecule. This stage is critical for 

extracting important information from the input sequences. The vector lengths of drug and receptor 

embeddings are 384 and 1280, respectively. 

Following the extraction of the drug and receptor embedding, the subsequent task is to determine 

the mutual interaction between the drug and receptor by utilizing a gated multi-head attention 

(GMHA), which is a modified multi-head attention, specifically two-sided multi-head cross-attention, 

by adding learnable scaled factor and gate processes. Before that, each embedding result is projected into 

256 dimensions. GMHA receives input in the form of a query (𝑄𝑄), key (𝐾𝐾), and value (𝑉𝑉). Firstly, linear 

projection on the drug and receptor embedding vectors (𝐸𝐸) is used to get the drug and receptor's query, 

key, and value vectors. Then, use separate weight matrices (𝑊𝑊) for each operation with the formula 

shown in Eq. (2). In this process, we use k equal to 8 and 16 heads on Davis and KIBA, respectively. In 

every head (𝐻𝐻), feed the corresponding 𝑄𝑄, 𝐾𝐾, and 𝑉𝑉 into the attention mechanism with the formula in 

Eq. (3), where d is the dimension of 𝑄𝑄, 𝐾𝐾, and 𝑉𝑉 to obtain the attention weights and 𝜆𝜆 is a trainable 

scale factor used to adjust the level of scaling throughout the training process. Unlike the standard scale 

factor in multi-head attention, the square root of 𝑑𝑑, the 𝜆𝜆 parameter is trained along with other 

parameters to prevent the attention scores from becoming too small and make the scaling more flexible. 

If the scores are too small, the softmax distribution becomes nearly uniform, making the model unable 
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to focus on important features [32]. Next, the results in every head are linearly combined, adding the 

output of the attention mechanism to the original input, as shown in Eq. (4) [37]. We used the dropout 

to prevent overfitting. Next, instead of returning the attention result, we used a gate mechanism to 

control the attention output and original input embedding proportion. This process is based on a gated 

mechanism in the study [33], which organizes the flow of information from multiple sources. Although 

the implementations differ in form, the basic idea is similar, which allows the model to adjust the 

contributions from the attention output and the input embedding. This mechanism is crucial due to 

the potential loss of important information from the original input embedding during the process. By 

altering the proportion, we ensure the final result includes essential information from the original input 

embedding and the attention output. Finally, we performed a normalizing process on the results to 

produce a final output of the modified multi-head attention layer or 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑄𝑄,𝐾𝐾,𝑉𝑉) [37]. This process 

results in two outputs of attention: the drug (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) and the receptor (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) attention 

results. To proceed to the next process, both outputs are concatenated. 

𝒬𝒬𝑖𝑖 = 𝐸𝐸 ∙ 𝑊𝑊𝑖𝑖
𝒬𝒬;𝐾𝐾𝑖𝑖 = 𝐸𝐸 ∙ 𝑊𝑊𝑖𝑖

𝐾𝐾;𝑉𝑉𝑖𝑖, 𝑖𝑖 = 1, … , 𝑘𝑘   (2) 

𝐻𝐻𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝒬𝒬𝑖𝑖 ,𝐾𝐾𝑖𝑖 ,𝑉𝑉𝑖𝑖) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝒬𝒬𝑖𝑖𝐾𝐾𝑖𝑖
𝑇𝑇

𝜆𝜆√𝑑𝑑
� 𝑉𝑉𝑖𝑖 , 𝑖𝑖 = 1, … , 𝑘𝑘   (3) 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (𝒬𝒬,𝐾𝐾,𝑉𝑉)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐻𝐻𝑖𝑖 , … ,𝐻𝐻𝑘𝑘)𝑊𝑊𝑜𝑜)�)  (4) 

The final process involves feeding the result of gated multi-head attention into a fully connected 

layer. We train the model for 300 epochs using the mean squared error (MSE) loss function, as it ensures 

optimization across the full range of affinity values rather than being biased toward the most frequent 

ones. Given the skewed distribution of affinity values in Davis (centered around 5.0) and KIBA (around 

11–12), a regression-based approach is more suitable than classification to capture the continuous nature 

of drug and receptor interactions. The Adam optimizer is used for training, and we conducted 

exploratory experiments to tune hyperparameters for optimal performance. The hyperparameters 

investigated include learning rate {0.01, 0.001, 0.0001}, batch size {128, 256, 512}, and dropout rate {0.1 

to 0.4}. The final settings were a learning rate of 0.0001, batch size of 256 for Davis and 512 for KIBA, 

dropout rate of 0.3, and weight decay of 0.001, which improved stability and reduced overfitting. The 

formula for the loss function is shown in Eq. (5), where n represents the number of samples, y’ represents 

the prediction, and y represents the actual affinity score. 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖′ − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1    (5) 

2.3. Experimental Design 
This study consisted of four main experiments, i.e., (a) parameter exploration, (b) drug and receptor 

representation, (c) interaction modeling, and (d) overall comparison. The parameter exploration aims to 

observe the effects of various parameters in our proposed method, ChemBERTa-2, ESM-2, and gated 

Multi-head attention DTA (CEMDTA), on the performance of the DTA prediction model. We 

considered three parameters involved in the model: head of attention, gate scale for the drug (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑑𝑑), 

and gate scale for the receptor (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑝𝑝). The details of the parameter values used in the experiment are 

shown in Table 1. We investigated the contribution of those parameters sequentially to determine the 

optimal combination. Firstly, we conducted experiments for the head parameter while setting the gate 

scale for both drug and receptor to 0.5. Secondly, the best head value obtained from the previous 

experiment was used to explore different gate scale values for the drug parameter. Thirdly, using the best 

head and 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑑𝑑 value, we experimented to determine the optimal gate scale for the receptor parameter. 

Finally, the best model is obtained from the combination of the optimal value of the head, gate scale for 

the drug (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑑𝑑), and gate scale for the receptor (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑝𝑝), which resulted in the best performance, as 

evaluated by 𝑟𝑟𝑚𝑚2 .
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Table 1.  The details of the parameter exploration experiment

 

Parameter Range of Values Description 

Head (H) [2, 4, 8, 16] 

The number of attention heads in a GMHA refers to the 

parameter that determines the number of parallel attention heads. 

Gate scale for the drug 

(gate_d) 

[0.1, 0.3, 0.5, 0.7, 0.9] 

Gate scale or contribution control value for the drug side as a query 

in GMHA 

Gate scale for the 

receptor (gate_p) 

[0.1, 0.3, 0.5, 0.7, 0.9] 

Gate scale or contribution control value for the receptor side as a 

query in GMHA 

 

In the drug and receptor representations experiment, we evaluated the method used to represent the 

drug and receptor sequences. We examined common methods of representing drugs and receptors in 

DTA prediction topics, such as CNN, LSTM, and CNN-LSTM. Then, we compared those common 

methods with our proposed method that uses pre-trained language models, specifically ChemBERTa-2 

and ESM-2. To ensure a fair comparison, we also included another PLM used by Kang et al. [38], 

namely ChemBERTa-1 (2020) and ProtBERT. Each representation method in this experiment uses the 

same interaction model as the proposed method GMHA, which allows us to compare the representation 

methods fairly and consistently. This experiment investigates the impact of different representation 

methods of drugs and receptors on the performance of DTA prediction. The summary of the comparison 

of the drug and receptor representation method is presented in Table 2. 

Table 2.  The summary of the drug and receptor representation method experiment 

Model Drug Repr. Receptor Repr. Interaction Model 
CNN + GMHA CNN 

GMHA 

LSTM + GMHA LSTM 

CNN-LSTM + GMHA CNN-LSTM 

ChemBERTaProtBERT + GMHA 

ChemBERTa-1 

(2020) 

ProtBERT 

CEMDTA ChemBERTa-2 ESM-2 
 

We also investigated interaction modeling, focusing on the interactions between drugs and receptors. 

We evaluated two approaches, namely concatenation, a common method for modeling mutual 

interaction, and our proposed GMHA mechanism, specifically gated two-sided multi-head cross-

attention. We performed this experiment using CNN, LSTM, CNN-LSTM, and the ChemBERTa-2, 

along with ESM-2 as drug and receptor representations. The interaction modeling aims to determine 

the effectiveness of GMHA in capturing the mutual interaction relationship between drug and receptor. 

To further validate GMHA's performance, we conducted an ablation study on the KIBA dataset by 

comparing GMHA (cross and two-sided) with No Attention, Self-Attention (cross and two-sided), and 

Multi-Head Attention (cross and two-sided). The summary of the interaction modeling is shown in 

Table 3. 

Table 3.  The summary of the interaction modeling experiment 

Model Drug Repr. Receptor Repr. Interaction Model 
CNN + Concat 

CNN 

Concat 

CNN + GMHA GMHA 

LSTM + Concat 

LSTM 

Concat 

LSTM + GMHA GMHA 

CNN-LSTM + Concat 

CNN-LSTM 

Concat 

CNN-LSTM + GMHA GMHA 

CECDTA ChemBERTa-2 ESM-2 Concat 

CEMDTA GMHA 
 

Finally, we conduct the method comparison experiment to evaluate CEMDTA against the 

benchmark models, i.e., AttentionDTA and GraphDTA. AttentionDTA is one of the state-of-the-art 

models in DTA prediction proposed by Zhao et al. in 2023. The model uses CNN to represent drug and 

receptor sequences, two-sided multi-head attention (MHA), and fully connected layers to model 
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interactions and predict DTA. Here, the attention outcomes proceed to max pooling separately [14]. 

Meanwhile, another state-of-the-art DTA, GraphDTA, which was originally proposed by Nguyen et al., 
uses a graph neural network to process SMILES sequences as a graph representation. In this experiment, 

we re-run GraphDTA using the graph isomorphism network (GIN) architecture that gives the best 

performance score in the related paper [39]. For a fair comparison, we adapted and re-executed the 

publicly available models, adjusting them to be compatible with our dataset while using the original 

settings described in their respective papers.  

Also, we compare the proposed method with several baseline models, i.e., CNN, LSTM, and CNN-

LSTM. As for all baseline models, we also considered combining the concatenation and fully connected 

layers part into the main algorithm. The deep learning method used as the baseline is also frequently 

used in DTA-related studies. Methods such as CNN and CNN-LSTM are methods that are quite often 

used to represent drug and receptor sequences. In the literature survey, there are more than 5 studies 

that use CNN as the main method of drug or receptor representation, with various modifications [13], 

[14], [17]–[21]. Meanwhile, for CNN-LSTM, there are more than a few studies that at least use the 

method for drug or receptor representation [12], [13]. Furthermore, we also consider LSTM to be a 

baseline because it is excellent at capturing long-term dependencies in sequential data. As for interaction 

modeling, this baseline method uses concatenation and fully connected layers, which is conducted by 

most current DTA studies. This experiment examines the proposed method's effectiveness compared to 

these well-known approaches in the DTA prediction model. The summary of the method comparison 

is shown in Table 4. 

Table 4.  The summary of the method comparison experiment 

Model Drug Repr. Receptor Repr. Interaction Model 
AttentionDTA (benchmark) CNN CNN MHA 

GraphDTA (benchmark) GIN CNN Concat 

CNN + Concat (baseline) CNN CNN Concat 

LSTM + Concat (baseline) LSTM LSTM Concat 

CNN-LSTM + Concat (baseline) CNN-LSTM CNN-LSTM Concat 

CEMDTA ChemBERTa-2 ESM-2 GMHA 

2.4. Evaluation Metrics 
In the evaluation process, we measure the model's performance using various metrics. The three 

performance metrics frequently used in DTA are mean squared error (MSE), concordance index (CI) 

proposed by Gönen et al. [40], and regression toward the mean or modified r-squared (𝑟𝑟𝑚𝑚2 ) proposed by 

Roy et al. [41]. MSE is one of the most common metrics for evaluating regression models. It calculates 

the average sum of squares of the difference between predicted values y’ and actual values y. The smaller 

the MSE value, the more robust the regression model [16]. MSE is defined as shown in Eq. (5). 

Meanwhile, the concordance index (CI) measures the ranking performance of the models that output 

continuous values [40]. The formula of CI is given in Eq. (6), where bx is the predicted value for a larger 

affinity 𝛿𝛿x and by is the predicted value for smaller affinity 𝛿𝛿𝑦𝑦. The value of Z denotes a normalized 

constant, and ℎ(𝑚𝑚) is a step function [17]. The value for ℎ(𝑚𝑚) is defined as shown in Eq. (7). CI has a 

range of values between 0.5 and 1, with 1 indicating a perfect prediction and 0.5 indicating a random 

predictor [18]. 

𝐶𝐶𝐶𝐶 = 1
𝑍𝑍
∑ ℎ(𝑏𝑏𝑥𝑥 − 𝑏𝑏𝑦𝑦)𝛿𝛿𝑥𝑥>𝛿𝛿𝑦𝑦    (6) 

ℎ(𝑚𝑚) = �
1 𝑖𝑖𝑖𝑖 𝑚𝑚 > 0

0.5 𝑖𝑖𝑖𝑖 𝑚𝑚 = 0
0 𝑖𝑖𝑖𝑖 𝑚𝑚 < 0

   (7) 

The modified r-squared (𝑟𝑟𝑚𝑚2 ) metric was utilized as another measurement metric to strengthen the 

evaluation of our model. The 𝑟𝑟𝑚𝑚2  is a modified squared correlation coefficient formulated in Eq. (8). The 
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variables 𝑟𝑟2 and 𝑟𝑟0
2 indicate the squared correlation coefficient between the predicted and actual values 

with intercept and without intercept, respectively. The key advantage of 𝑟𝑟𝑚𝑚2  is that it provides a more 

robust measure of predictive ability under different conditions, as it reduces the potential bias introduced 

by the intercept. Unlike 𝑟𝑟2, which can be overestimated due to the intercept influence, 𝑟𝑟𝑚𝑚2  gives a more 

fair and stable evaluation of model performance. A satisfactory model should have a 𝑟𝑟𝑚𝑚2  value that exceeds 

0.5 [22]. Higher values for both CI and 𝑟𝑟𝑚𝑚2  imply better performance. 

𝑟𝑟𝑚𝑚2 = 𝑟𝑟2 × �1 −�𝑟𝑟2 − 𝑟𝑟02�   (8) 

These three metrics provide valuable insight into the model's performance in real-world drug 

discovery. MSE measures the average squared error, which indicates how close the model predictions are 

to the actual affinities. CI evaluates the ranking ability of the model, which is useful for prioritizing drug 

candidates based on their predicted binding strength or affinity. Meanwhile, 𝑟𝑟𝑚𝑚2  ensures the model 

maintains consistent predictive power with and without intercepts. Combining these metrics makes the 

evaluation more comprehensive, covering both the correctness and ranking ability, which is crucial for 

real-world drug discovery applications. 

3. Results and Discussion 

3.1. The Exploration of Parameter Impact 
We explored three main parameters in our proposed method, in which the results for both Davis 

and KIBA datasets are presented in Table 5 and Table 6, respectively. 

Table 5.  The evaluation results of the parameter exploration experiment on the Davis dataset 

Parameter Value MSE CI 𝒓𝒓𝒎𝒎𝟐𝟐  

Head (H) 

2 0.210 0.891 0.663 

4 0.209 0.892 0.670 

8 0.209 0.893 0.673 
16 0.206 0.892 0.670 

Gate scale for drug 

(Gate_d) 

0.1 0.212 0.890 0.656 

0.3 0.213 0.891 0.666 

0.5 0.209 0.893 0.673 

0.7 0.215 0.893 0.655 

0.9 0.223 0.887 0.656 

Gate scale for receptor 

(Gate_p) 

0.1 0.207 0.892 0.670 

0.3 0.207 0.891 0.666 

0.5 0.209 0.893 0.673 

0.7 0.206 0.893 0.667 

0.9 0.213 0.890 0.656 

  

Subsequently, we explored the gate scale for drug (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑑𝑑) and receptor (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑝𝑝) parameters, which 

control the proportion of attention result and original input embedding on the drug side as query and 

receptor side as query. The impact of 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑑𝑑 and 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑝𝑝 parameters in both datasets show a similar 

trend, whereas small values lead to poor information utilization, while too large values lead to overfitting. 

However, in the KIBA dataset, the decrement is sharper, which indicates that the model is more sensitive 

to changes in gate values. 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑑𝑑and 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑝𝑝 values of 0.5 consistently provide optimal performance on 

both datasets, retaining enough information without losing the generalizability of the model. According 

to the results, the best value based on the 𝑟𝑟𝑚𝑚2  performance for the head parameter in the Davis dataset 

is 8, while in KIBA, it is 16. Then, the best gate scale value for the drug and receptor is the same in 

both datasets, which is 0.5. Combining these parameters resulted in the best model with 𝑟𝑟𝑚𝑚2  of 0.673 

and 0.723 for Davis and KIBA, respectively. 
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Table 6.  The evaluation results of the parameter exploration experiment on the KIBA dataset 

Parameter Value MSE CI 𝒓𝒓𝒎𝒎𝟐𝟐  

Head (H) 

2 0.163 0.877 0.685 

4 0.164 0.875 0.661 

8 0.166 0.876 0.652 

16 0.166 0.872 0.723 

Gate scale for drug 

(Gate_d) 

0.1 0.170 0.872 0.689 

0.3 0.162 0.878 0.665 

0.5 0.166 0.872 0.723 
0.7 0.167 0.874 0.638 

0.9 0.169 0.868 0.556 

Gate scale for receptor 

(Gate_p) 

0.1 0.164 0.876 0.674 

0.3 0.165 0.878 0.617 

0.5 0.166 0.872 0.723 
0.7 0.163 0.877 0.665 

0.9 0.164 0.874 0.580 

 

After the exploration was completed, the performance of our best model for each dataset was 

evaluated using the three primary metrics, namely MSE, CI, and 𝑟𝑟𝑚𝑚2 . The best model shows an MSE 

value of 0.209 for the Davis dataset and 0.166 for KIBA, reflecting a relatively low prediction error 

compared to other models. The fairly low error means that our model is better at predicting the actual 

value of affinity. Nonetheless, MSE alone is insufficient to evaluate the model's excellence, as it lacks a 

definitive range of values that define a model as excellent. Therefore, we added a concordance index (CI) 

metric to comprehensively view our model performance in predicting DTA. Our best model achieved a 

CI value of 0.893 on the Davis dataset, while on the KIBA dataset, it reached 0.872. These values are 

fairly high and indicate that our model can consistently rank stronger interactions over weaker ones. 

Moreover, the 𝑟𝑟𝑚𝑚2  metric is crucial for assessing how well the model captures the relationship between 

predicted and actual binding affinity. Our best model achieves an 𝑟𝑟𝑚𝑚2  score of 0.673 on Davis and 0.723 

on KIBA. These results indicate that the model fairly well identifies biological patterns underlying drug-

receptor affinity, leading to predictions that align with actual values. While not in the excellent range, 

the 𝑟𝑟𝑚𝑚2  score suggests that our model remains competitive. 

Fig. 2 compares the training loss and validation loss curves of the best model (CEMDTA). The left 

chart is for the Davis dataset, while the right is for the KIBA dataset. In the loss curves chart on the 

Davis dataset, it can be seen that the training loss decreases significantly to below 0.1, while the validation 

loss starts to stabilize around 0.18 to 0.19 after about 200 epochs. However, a gap of about 0.1 between 

the training loss and validation loss at the near end of the training indicates that the model is slightly 

overfitting. To address overfitting, we have applied several techniques, including adding dropout layers 

at multiple stages—after drug and receptor feature embedding, within the GMHA stage and in each 

hidden layer of the fully connected layer. Additionally, we implemented weight decay with a value of 

0.001. Despite these efforts, a small degree of overfitting remains in the Davis dataset. In contrast, in 

the right-hand chart (KIBA), which has a larger amount of data, the difference between training loss 

and validation loss is much smaller than the loss curves on the Davis dataset. The validation loss also 

shows a more steady decrease and is closer to the training loss. This indicates that with a larger dataset, 

the model can improve its generalization ability with the validation data. These results show that the 

dataset size has contributed to reducing overfitting, which is relevant as the model is based on deep 

learning, which has the advantage of large data for improved performance. Based on these observations, 

further exploration of additional mitigation strategies may be valuable. For example, data augmentation 

techniques for the SMILES representation, such as SMILES randomization that shuffles the sequence 

but retains the original molecules, may be considered in future studies to improve generalizability. 

Validation loss in both datasets shows stability after about 200 epochs. 
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Fig. 2. The training and validation loss curves of the best model on both datasets, Davis (left) and KIBA (right) 

3.2. The Drug and Receptor Representation 
We compared the drug and receptor representation of our proposed approach, which utilized 

ChemBERTa-2 and ESM-2, with the common methods used in DTA studies and another PLM 

(ChemBERTa-1 and ProtBERT). Fig. 3 presents the results of the drug and receptor representation 

method comparison.  

 

Fig. 3. The evaluation results of the comparison of the proposed drug and receptor representations with other 

representations in predicting DTA (the proposed representation method is marked with *) 

It shows that all models achieved fairly good CI scores, exceeding 0.7 on Davis and 0.6 on KIBA. 

Nevertheless, our proposed method consistently outperformed other representation methods, with the 

highest CI score of 0.893 in Davis and 0.872 in KIBA. In the 𝑟𝑟𝑚𝑚2  metric, the improvements were even 

more significant, with our model showing a substantial advantage over the other methods. Particularly, 

the ChemBERTa-2 and ESM-2 achieved the highest overall scores, while the models with the lowest 

overall scores were ChemBERTa-1 and ProtBERT on both datasets. 

The superior performance of our approach is primarily attributed to the richness of the representation 

of the ChemBERTa-2 and ESM-2 models. Ahmad et al. [26] and Lin et al.[27] previously trained the 

ChemBERTa-2 and ESM-2 models, respectively, using large datasets with the same type (SMILES and 

amino acid sequences) as ours. Their excellent performance indicates that these pre-trained models 

leverage relevant and insightful information that enhances DTA prediction performance. The 5.4% and 

84.4% improvements in the CI and 𝑟𝑟𝑚𝑚2  values, respectively, compared to the CNN method for CI and 

CNN-LSTM for 𝑟𝑟𝑚𝑚2 , further demonstrate the effectiveness of our model on Davis. Similarly, on KIBA, 

our model improved by 11.6% in CI and 49.1% in 𝑟𝑟𝑚𝑚2  compared to the second-best CNN model. This 
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significant enhancement underscores the benefits of leveraging pre-trained models to improve prediction 

results. 

3.3. The Interaction Modeling 
We compared the interaction modeling between concatenation and our proposed gated multi-head 

attention (GMHA) to model the mutual interaction of drug and receptor. Fig. 4 shows the comparison 

results of the proposed interaction model, a gated two-sided multi-head cross-attention or GMHA with 

a concatenation-only method. 

 

Fig. 4. The evaluation results of the interaction modeling experiment on the Davis and KIBA dataset 

Based on the results, we found that GMHA outperformed the concatenation method across most 

metrics and representation methods for both the Davis and KIBA datasets, with only one model in each 

dataset showing slightly lower 𝑟𝑟𝑚𝑚2  values. For the CI metric, there was a slight improvement in both 

datasets. Meanwhile, for the 𝑟𝑟𝑚𝑚2  metric, on the Davis dataset, GMHA improved the score slightly, while 

on KIBA, the improvement was more significant. When GMHA was applied to the pre-trained models 

like ChemBERTa-2 and ESM-2 on Davis, it increased the 𝑟𝑟𝑚𝑚2  score from 0.668 to 0.673, indicating a 

minor enhancement. This suggests that while GMHA can enhance the ability to capture complex mutual 

interactions, its impact is limited on smaller datasets like Davis. Moreover, the CI score of approximately 

0.89 achieved by the concatenation method and GMHA highlights that the pre-trained model already 

contains most of the necessary information for affinity prediction. However, the benefits of GMHA are 

more pronounced on larger datasets with longer sequences, such as KIBA, where it increased the CI 

from 0.851 to 0.872 and 𝑟𝑟𝑚𝑚2  from 0.394 to 0.723. These results demonstrate that GMHA is more effective 

than concatenation in capturing deep interactions between drugs and receptors on datasets with more 

complex characteristics.  
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GMHA provides a more significant improvement on the KIBA dataset than Davis because of the 

limitations of PLMs such as ChemBERTa-2 and ESM-2 in capturing all the important features of the 

data. Although all sequences were included in the model without truncation, the original design of the 

PLM was still built with a default input length limit of 512 for ChemBERTa-2 and 1024 for ESM-2. 

This capacity of ESM-2 is much shorter than the length of the longest protein sequences in both the 

KIBA (4128) and Davis (2549) datasets. This indicates that although the model can process longer 

inputs, its pre-trained architecture is likely not fully optimized to capture important features of long 

sequences, especially in the KIBA dataset. Under these conditions, GMHA provides the advantage of 

utilizing an attention mechanism that can capture deep relationships between feature embeddings with 

a gate mechanism to control the proportion of original input embedding and attention results, thus 

being able to extract important information that pre-trained models potentially miss. In contrast, a 

simple concatenation method cannot emphasize important features in long and complex sequences. 

Without an attention mechanism, the concatenation method treats all features equally, thus not 

considering the relationships between previously extracted features. As a result, important information 

in complex interactions can be overlooked, especially in datasets like KIBA, which combine data from 

Davis, Metz, and Anastassiadis [34], leading to diverse interaction patterns that require a more adaptive 

method. Therefore, GMHA provides a more effective solution for exploring the complex relationships 

between drugs and receptors, explaining the greater performance improvement on more complex 

datasets such as KIBA over Davis.  

In addition, Fig. 5 displays the attention heatmap to show how the GMHA captures the relationships 

between features embedding in Davis (top) and KIBA (bottom). The color difference between the two 

reflects how the model processes the relationship between features. In Davis, attention is spread more 

evenly, while in KIBA, attention is more focused on specific features, showing a more heterogeneous 

pattern. The more sparse and specific attention structure of KIBA indicates that GMHA can capture 

more important features in this dataset.   

 

Fig. 5. The attention heatmaps on the Davis and KIBA dataset 
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Furthermore, to analyze the effectiveness of GMHA, we conducted an ablation study by comparing 

GMHA with no attention, self-attention, and multi-head attention. As shown in Table 7, attention 

mechanisms generally improve the model's performance in predicting DTA. Gated Multi-head 

Attention (GMHA) is the superior approach, with the highest 𝑟𝑟𝑚𝑚2 . Models without attention only 

concatenate features, thus failing to capture complex mutual relationships. Self Attention improves this 

by considering interactions between features, while Multi-head Attention is superior as it can capture 

patterns from multiple perspectives in parallel. However, the most significant improvement occurs when 

the GMHA is applied, which adds a gate mechanism to regulate the proportion of information between 

attention and input embedding. These results prove that GMHA is more effective in understanding 

complex mutual relationships between features, thus providing better performance than other methods. 

Table 7.  The evaluation results of the ablation study of GMHA on the KIBA dataset 

Model Description  𝒓𝒓𝒎𝒎𝟐𝟐  
No Attention Concat 0.394 

Self Attention Two Sided Self Cross Attention 0.613 

Multi-head Attention Two Sided Multi-head Cross Attention 0.656 

Gated Multi-head Attention Gated Two Sided Multi-head Cross Attention 0.723 

 

3.4. The Method Comparison 
We evaluated our proposed method, CEMDTA, with the benchmark and baseline models in the 

method comparison. The results of the method comparison evaluation are presented in Table 8.  

Table 8.  The evaluation results of the method comparison experiment on the Davis and KIBA dataset 

Dataset Model MSE CI  𝒓𝒓𝒎𝒎𝟐𝟐  

Davis 

AttentionDTA (benchmark) 0.219 0.878 0.587 

GraphDTA (benchmark) 0.240 0.871 0.559 

CNN + Concat (baseline) 0.364 0.832 0.333 

LSTM + Concat (baseline) 0.393 0.807 0.268 

CNN-LSTM + Concat (baseline) 0.389 0.817 0.339 

CEMDTA (proposed method) 0.209 0.893 0.673 

KIBA 

AttentionDTA (benchmark) 0.171 0.873 0.595 

GraphDTA (benchmark) 0.166 0.875 0.606 

CNN + Concat (baseline) 0.369 0.776 0.150 

LSTM + Concat (baseline) 0.381 0.777 0.321 

CNN-LSTM + Concat (baseline) 0.402 0.779 0.316 

CEMDTA (proposed method) 0.166 0.872 0.723 
 

CEMDTA achieved the best performance on the Davis dataset in all metrics, with the lowest MSE 

and the highest CI and 𝑟𝑟𝑚𝑚2  values. On the KIBA dataset, although CEMDTA shows the best 

performance in terms of MSE and 𝑟𝑟𝑚𝑚2 , its CI value is slightly lower than the GraphDTA, differing by 

only a small margin (0.872 compared to 0.875), which indicates a competitive ranking performance. 

These results highlight the overall effectiveness of our proposed method in predicting DTA based on 

sequences, achieving superior performance across evaluation metrics on the Davis dataset, and 

demonstrating competitive results on the KIBA dataset. This improvement is mainly due to the use of 

a pre-trained model that is more robust in capturing the features of both drug and receptor sequences, 

as well as the implementation of gated two-sided multi-head cross-attention (GMHA), which is more 

effective in modeling their mutual interaction. In contrast, AttentionDTA, another sequence-based 

model, does not leverage a pre-trained language model or the GMHA mechanism, resulting in sub-

optimal feature representation. Nevertheless, AttentionDTA ranks as the second-best model on the 

Davis dataset, achieving a CI value of 0.878 and an 𝑟𝑟𝑚𝑚2  value of 0.587. As for GraphDTA, although it 
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uses a graph representation to represent the drug, it still relies on the SMILES sequence at an early 

stage. Graph representation excels in capturing the relationships between atoms. However, our 

completely sequence-based approach, which works directly at the linear sequence level, can effectively 

capture the complexity of the relationship between drug compounds and target receptors without the 

use of graphs. This suggests that our model is superior in DTA prediction effectiveness with a simpler 

approach than GraphDTA. Nonetheless, on the KIBA dataset, GraphDTA ranked as the second-best 

model after ours, with a CI value of 0.875 and an 𝑟𝑟𝑚𝑚2  value of 0.606. 

Furthermore, among the baseline models, CNN with concat performs best on the Davis dataset, 

achieving MSE, CI, and 𝑟𝑟𝑚𝑚2  scores of 0.364, 0.832, and 0.333, respectively. Meanwhile, on the KIBA, 

the LSTM model with concat emerges as the best baseline, with MSE, CI, and 𝑟𝑟𝑚𝑚2  scores of 0.381, 

0.777, and 0.321, respectively. However, based on the results, these models show limitations in capturing 

complex patterns of sequences. Additionally, the concatenation method these models use struggles to 

effectively model the relationships between drugs and receptors, making it less capable of capturing the 

critical mutual interactions between them. Therefore, CEMDTA offers a more accurate approach for 

sequence-based DTA prediction, with better capability in modeling such complex relationships. 

The training was performed on a Google Colab Pro with an NVIDIA T4 GPU. Despite using pre-

trained models, CEMDTA trains significantly faster than other benchmark models due to the separate 

feature extraction process for ChemBERTa-2 and ESM-2. CEMDTA takes 2.2 seconds/epoch on the 

Davis dataset, while AttentionDTA and GraphDTA take 22.5 seconds and 5.3 seconds/epoch, 

respectively. On KIBA, CEMDTA was trained in 10.3 seconds/epoch, compared to 37.9 seconds and 21 

seconds/epoch for the benchmark. Memory usage remains within the 15 GB GPU RAM, making this 

model computationally efficient. 

3.5. Limitations 
This study focuses on sequence-based methods for DTA prediction, with AttentionDTA (2023) as 

the main benchmark. A graph-based model, such as GraphDTA, was included as an additional reference. 

Furthermore, a model like MolBERT (2021) was not considered due to its focus on DTI classification 

rather than regression (DTA). The models used for method comparison in this study were selected based 

on their relevance during the experiments. Models developed or published afterward have not been 

explored but could be investigated in future studies. Additionally, limited computational resources have 

constrained further experiments with transformer-based models or other more complex approaches. 

This study used two widely used datasets, Davis and KIBA, for training and evaluation. While these 

datasets are standard benchmarks, they may not fully represent the diversity of real-world drug and 

receptor affinity. Nevertheless, they provide a strong foundation for evaluating the performance of DTA 

prediction models. Due to computational constraints, this study was limited to Davis and KIBA. Future 

studies could explore the impact of incorporating larger and more diverse datasets, such as BindingDB 

or PDBBind, to further enhance model robustness and generalizability. In addition, interpretability 

remains a challenge in deep learning-based DTA models. While our approach uses attention 

mechanisms, it operates on features extracted by PLMs, making it difficult to attribute biological 

significance to specific features. Improving interpretability in DTA prediction remains an open research 

direction for future studies. 

4. Conclusion 
This study aims to develop, evaluate, and analyze a method integrating pre-trained language models, 

ChemBERTa-2 and ESM-2, for representation of the drug and receptor, respectively, and implemented 

gated multi-head attention (GMHA) mechanism with dynamic scaling and gate mechanism to regulate 

attention proportions. Four main experiments, namely parameter exploration, drug and receptor 

representation, interaction modeling, and method comparison, are performed to evaluate our proposed 

method. Based on the experimental results, our proposed method has competitive performance. It 

exceeds the benchmark and baseline models in terms of all evaluation metrics, with CI scores of 0.893 

and 0.872 and 𝑟𝑟𝑚𝑚2  scores of 0.673 and 0.723 on Davis and KIBA, respectively. This optimal performance 
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is achieved with a head of 8 on the Davis dataset and 16 on the KIBA dataset and the gate scale for drug 

and receptor values of 0.5, which balances the capability of extracting information and model 

generalization. Then, we found that using pre-trained language models for drug and receptor 

representation improves the DTA prediction model's effectiveness. Furthermore, the implementation of 

GMHA, two-sided multi-head cross-attention with dynamic scaled and gate process, can improve the 

overall performance compared to the simple concatenation method. For future research, it is 

recommended to develop DTA prediction models by utilizing more diverse modalities, such as drug and 

receptor chemical properties, molecular fingerprints, and graph-based approaches to capture more robust 

information regarding drug and receptor binding affinities. In addition, while the results are competitive, 

we should further improve the 𝑟𝑟𝑚𝑚2  metric to enhance the model's generalizability. 
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