Enhanced U-Net architecture with CNN backbone for accurate segmentation of skin lesions in dermoscopic images

(1) Aqil Aqthobirrobbany Mail (Department of Electrical and Information Engineering, Universitas Gadjah Mada, Indonesia)
(2) Resha Dwika Hefni Al-Fahsi Mail (Department of Electrical and Information Engineering, Universitas Gadjah Mada, Indonesia)
(3) Indah Soesanti Mail (Department of Electrical and Information Engineering, Universitas Gadjah Mada, Indonesia)
(4) * Hanung Adi Nugroho Mail (Department of Electrical and Information Engineering, Universitas Gadjah Mada, Indonesia)
*corresponding author

Abstract


Addressing the critical public health challenge of skin cancer, particularly melanoma and non-melanoma, this study focuses on enhancing early diagnosis through improved automatic segmentation of skin lesions in dermoscopic images. The researchers propose an optimized U-Net architecture that integrates advanced convolutional neural networks (CNNs) with backbone models such as ResNet50, VGG16, and MobileNetV2, specifically designed to handle the inherent variability and artifacts in dermoscopic imagery. The method's effectiveness was validated using the ISIC-2018 dataset, and our U-Net model incorporating the VGG16 backbone achieved notable improvements in segmentation accuracy, demonstrating an accuracy rate of 0.93. These results signify significant enhancements over existing methods, emphasizing the potential of the proposed approach in aiding precise skin cancer diagnosis and detection. This study makes a valuable contribution to dermatological imaging by presenting an advanced method that substantially boosts the accuracy of skin lesion segmentation, addressing a crucial need in public health.

Keywords


Convolution Neural Network; Enhanced U-Net; Ensemble Segmentation Methods; Skin Skin Lesion Segmentation

   

DOI

https://doi.org/10.26555/ijain.v10i3.1379
      

Article metrics

Abstract views : 254 | PDF views : 22

   

Cite

   

Full Text

Download

References


[1] “Skin cancer statistics,” World Cancer Research Fund International, 2022. [Online]. Available at: https://www.wcrf.org/cancer-trends/skin-cancer-statistics/.

[2] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA. Cancer J. Clin., vol. 68, no. 6, pp. 394–424, Nov. 2018, doi: 10.3322/caac.21492.

[3] Euromelanoma and Global Coalition for Melanoma Patient Advocacy, “2O2O Melanoma Skin Cancer Report,” 2020. [Online]. Available at: https://melanomapatients.org.au/wp-content/uploads/2021/09/2020-campaign-report-GC-version-MPA_1.pdf.

[4] N. K. Mishra and M. E. Celebi, “An Overview of Melanoma Detection in Dermoscopy Images Using Image Processing and Machine Learning,” arXiv Comput. Vis. Pattern Recognit., p. 15, Jan. 2016. [Online]. Available at: https://arxiv.org/abs/1601.07843v1.

[5] L. Zhang, G. Yang, and X. Ye, “Automatic skin lesion segmentation by coupling deep fully convolutional networks and shallow network with textons,” J. Med. Imaging, vol. 6, no. 02, p. 1, Apr. 2019, doi: 10.1117/1.JMI.6.2.024001.

[6] P. M. M. Pereira et al., “Dermoscopic skin lesion image segmentation based on Local Binary Pattern Clustering: Comparative study,” Biomed. Signal Process. Control, vol. 59, p. 101924, May 2020, doi: 10.1016/j.bspc.2020.101924.

[7] R. Garnavi, M. Aldeen, M. E. Celebi, G. Varigos, and S. Finch, “Border detection in dermoscopy images using hybrid thresholding on optimized color channels,” Comput. Med. Imaging Graph., vol. 35, no. 2, pp. 105–115, Mar. 2011, doi: 10.1016/j.compmedimag.2010.08.001.

[8] M. H. Jafari, S. Samavi, S. M. R. Soroushmehr, H. Mohaghegh, N. Karimi, and K. Najarian, “Set of descriptors for skin cancer diagnosis using non-dermoscopic color images,” in 2016 IEEE International Conference on Image Processing (ICIP), Sep. 2016, vol. 2016-Augus, pp. 2638–2642, doi: 10.1109/ICIP.2016.7532837.

[9] P. M. M. Pereira et al., “Skin lesion classification enhancement using border-line features – The melanoma vs nevus problem,” Biomed. Signal Process. Control, vol. 57, p. 101765, Mar. 2020, doi: 10.1016/j.bspc.2019.101765.

[10] C. Barata, M. E. Celebi, and J. S. Marques, “A Survey of Feature Extraction in Dermoscopy Image Analysis of Skin Cancer,” IEEE J. Biomed. Heal. Informatics, vol. 23, no. 3, pp. 1096–1109, May 2019, doi: 10.1109/JBHI.2018.2845939.

[11] Q. Sang, Z. Shu, L. Liu, C. Hu, and Q. Wu, “Image quality assessment based on self-supervised learning and knowledge distillation,” J. Vis. Commun. Image Represent., vol. 90, p. 103708, Feb. 2023, doi: 10.1016/j.jvcir.2022.103708.

[12] M. Cullell-Dalmau, M. Otero-Viñas, and C. Manzo, “Research Techniques Made Simple: Deep Learning for the Classification of Dermatological Images,” J. Invest. Dermatol., vol. 140, no. 3, pp. 507-514.e1, Mar. 2020, doi: 10.1016/j.jid.2019.12.029.

[13] N. Codella, J. Cai, M. Abedini, R. Garnavi, A. Halpern, and J. R. Smith, “Deep Learning, Sparse Coding, and SVM for Melanoma Recognition in Dermoscopy Images,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9352, Springer, Cham, 2015, pp. 118–126, doi: 10.1007/978-3-319-24888-2_15.

[14] N. C. F. Codella et al., “Skin lesion analysis toward melanoma detection: A challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC),” in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Apr. 2018, vol. 2018-April, pp. 168–172, doi: 10.1109/ISBI.2018.8363547.

[15] R. C. Maron et al., “Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks,” Eur. J. Cancer, vol. 119, pp. 57–65, Sep. 2019, doi: 10.1016/j.ejca.2019.06.013.

[16] X. Yuan, J. Shi, and L. Gu, “A review of deep learning methods for semantic segmentation of remote sensing imagery,” Expert Syst. Appl., vol. 169, p. 114417, May 2021, doi: 10.1016/j.eswa.2020.114417.

[17] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention, 2015, pp. 234–241, doi: 10.1007/978-3-319-24574-4_28.

[18] S. Manivannan and N. Venkateswaran, “Skin Lesion Segmentation using Residual U-NET,” in 2023 10th International Conference on Signal Processing and Integrated Networks (SPIN), Mar. 2023, pp. 405–409, doi: 10.1109/SPIN57001.2023.10116287.

[19] V. Anand, S. Gupta, D. Koundal, S. R. Nayak, P. Barsocchi, and A. K. Bhoi, “Modified U-NET Architecture for Segmentation of Skin Lesion,” Sensors, vol. 22, no. 3, p. 867, Jan. 2022, doi: 10.3390/s22030867.

[20] E. Uysal and G. E. Güraksin, “Computer-aided retinal vessel segmentation in retinal images: convolutional neural networks,” Multimed. Tools Appl., vol. 80, no. 3, pp. 3505–3528, Jan. 2021, doi: 10.1007/s11042-020-09372-w.

[21] M. Tamoor, A. Naseer, A. Khan, and K. Zafar, “Skin Lesion Segmentation Using an Ensemble of Different Image Processing Methods,” Diagnostics, vol. 13, no. 16, p. 2684, Aug. 2023, doi: 10.3390/diagnostics13162684.

[22] B. K. Triwijoyo and A. Adil, “Analysis of Medical Image Resizing Using Bicubic Interpolation Algorithm,” J. Ilmu Komput., vol. 14, no. 1, p. 20, Apr. 2021, doi: 10.24843/JIK.2021.v14.i01.p03.

[23] D. Khaledyan, A. Amirany, K. Jafari, M. H. Moaiyeri, A. Z. Khuzani, and N. Mashhadi, “Low-Cost Implementation of Bilinear and Bicubic Image Interpolation for Real-Time Image Super-Resolution,” in 2020 IEEE Global Humanitarian Technology Conference (GHTC), Oct. 2020, pp. 1–5, doi: 10.1109/GHTC46280.2020.9342625.

[24] R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, and R. X. Gao, “Deep learning and its applications to machine health monitoring,” Mech. Syst. Signal Process., vol. 115, pp. 213–237, Jan. 2019, doi: 10.1016/j.ymssp.2018.05.050.

[25] X.-X. Yin, L. Sun, Y. Fu, R. Lu, and Y. Zhang, “U-Net-Based Medical Image Segmentation,” J. Healthc. Eng., vol. 2022, no. 1, pp. 1–16, Apr. 2022, doi: 10.1155/2022/4189781.

[26] H. Akan and M. Z. Yıldız, “Development of new descriptor for melanoma detection on dermoscopic images,” Med. Biol. Eng. Comput., vol. 58, no. 11, pp. 2711–2723, Nov. 2020, doi: 10.1007/s11517-020-02248-z.

[27] S. Benyahia, B. Meftah, and O. Lézoray, “Multi-features extraction based on deep learning for skin lesion classification,” Tissue Cell, vol. 74, p. 101701, Feb. 2022, doi: 10.1016/j.tice.2021.101701.

[28] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 2018, pp. 4510–4520, doi: 10.1109/CVPR.2018.00474.

[29] S. Ali, M. Hassan, J. Y. Kim, M. I. Farid, M. Sanaullah, and H. Mufti, “FF-PCA-LDA: Intelligent Feature Fusion Based PCA-LDA Classification System for Plant Leaf Diseases,” Appl. Sci., vol. 12, no. 7, p. 3514, Mar. 2022, doi: 10.3390/app12073514.

[30] S. Mongkhonthanaphon and Y. Limpiyakorn, “Classification of titanium microstructure with fully convolutional neural networks,” J. Phys. Conf. Ser., vol. 1195, no. 1, p. 012022, Apr. 2019, doi: 10.1088/1742-6596/1195/1/012022.

[31] D. Müller, I. Soto-Rey, and F. Kramer, “Towards a guideline for evaluation metrics in medical image segmentation,” BMC Res. Notes, vol. 15, no. 1, p. 210, Dec. 2022, doi: 10.1186/s13104-022-06096-y.

[32] A. A. Pravitasari, N. Iriawan, U. S. Nuraini, and D. A. Rasyid, “On comparing optimizer of UNet-VGG16 architecture for brain tumor image segmentation,” in Brain Tumor MRI Image Segmentation Using Deep Learning Techniques, Elsevier, 2022, pp. 197–215, doi: 10.1016/B978-0-323-91171-9.00004-1.

[33] S. Lefkovits and L. Lefkovits, “U-Net architecture variants for brain tumor segmentation of histogram corrected images,” Acta Univ. Sapientiae, Inform., vol. 14, no. 1, pp. 49–74, Aug. 2022, doi: 10.2478/ausi-2022-0004.

[34] B. C. Bag, “Unet Mobilenetv2: Medical Image Segmentation Using Deep Neural Network (Dnn),” J. Mech. Contin. Math. Sci., vol. 18, no. 1, pp. 21–29, Jan. 2023, doi: 10.26782/jmcms.2023.01.00002.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571  (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
   andri.pranolo.id@ieee.org (publication issues)

View IJAIN Stats

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0