
(2) Gunardi Gunardi

(3) Danardono Danardono

(4) Dedi Rosadi

*corresponding author
AbstractRecommender systems are crucial for filtering vast amounts of digital content and providing personalized recommendations; however, their effectiveness is often hindered by data sparsity, where limited user-item interactions lead to reduced prediction accuracy. This study introduces a novel hybrid model, Optimization Hybrid Weighted Switching Filtering (OHWSF), to overcome this challenge by integrating two complementary strategies: Hybrid Weighted Filtering (HWF), which linearly combines predictions from SVD and SVD++ using a weighting parameter (α), and Hybrid Switching Filtering (HSF), which dynamically selects predictions based on a threshold rating (θ). The OHWSF framework introduces a tunable optimization mechanism governed by the parameter σ₁ to adaptively balance weighting and switching decisions based on actual rating deviations. Unlike existing static or manually tuned hybrid methods, the proposed model combines dynamic switching with weight optimization to minimize prediction error effectively. Extensive experiments on four benchmark datasets (ML-100K, ML-1M, Amazon Cell Phones Reviews, and GoodBooks-10K) demonstrate that OHWSF consistently outperforms traditional collaborative filtering (UBCF, IBCF), matrix factorization techniques (SVD, SVD++), and standalone hybrid models across all evaluation metrics (MAE, MSE, RMSE). The model achieves optimal performance within the range of α = 0.6–0.9 and θ = 1.0–1.5, demonstrating robustness across varying sparsity levels. Notably, OHWSF achieves up to 742.16% MAE improvement over the UBCF model, with significantly reduced training time compared to SVD++. These findings confirm that OHWSF significantly improves prediction accuracy, scalability, and adaptability in sparse data environments. This research contributes a flexible, interpretable, and efficient hybrid recommendation framework suitable for real-world applications.
KeywordsRecommender system; Hybrid filtering; Optimizing Hybrid Weighted Switching Filtering (OHWSF); Top-10 recommendation movies
|
DOIhttps://doi.org/10.26555/ijain.v11i3.1796 |
Article metricsAbstract views : 456 | PDF views : 42 |
Cite |
Full Text![]() |
References
[1] M. Arnold, M. Goldschmitt, and T. Rigotti, “Dealing with information overload: a comprehensive review,” Front. Psychol., vol. 14, no. June, 2023, doi: 10.3389/fpsyg.2023.1122200.
[2] B. D. Okkalioglu, “A Novel Hybrid Item-Based Similarity Method to Mitigate the Effects of Data Sparsity in Multi-Criteria Collaborative Filtering,” IEEE Access, vol. 13, no. March, pp. 64660–64686, 2025, doi: 10.1109/ACCESS.2025.3559398.
[3] Y. Li, K. Liu, R. Satapathy, S. Wang, and E. Cambria, “Recent Developments in Recommender Systems: A Survey [Review Article],” IEEE Comput. Intell. Mag., vol. 19, no. 2, pp. 78–95, 2024, doi: 10.1109/MCI.2024.3363984.
[4] I. Saifudin and T. Widiyaningtyas, “Systematic Literature Review on Recommender System: Approach, Problem, Evaluation Techniques, Datasets,” IEEE Access, vol. 12, pp. 19827–19847, 2024, doi: 10.1109/ACCESS.2024.3359274.
[5] S. Peng, S. Siet, S. Ilkhomjon, D. Y. Kim, and D. S. Park, “Integration of Deep Reinforcement Learning with Collaborative Filtering for Movie Recommendation Systems,” Appl. Sci., vol. 14, no. 3, 2024, doi: 10.3390/app14031155.
[6] Z. Dong, X. Liu, B. Chen, P. Polak, and P. Zhang, “MuseChat: A Conversational Music Recommendation System for Videos,” in 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, pp. 12775–12785, doi: 10.1109/CVPR52733.2024.01214.
[7] D. T. Tran and J. H. Huh, “New machine learning model based on the time factor for e-commerce recommendation systems,” J. Supercomput., vol. 79, no. 6, pp. 6756–6801, 2023, doi: 10.1007/s11227-022-04909-2.
[8] J. N. Bondevik, K. E. Bennin, Ö. Babur, and C. Ersch, “A systematic review on food recommender systems,” Expert Syst. Appl., vol. 238, p. 122166, 2024, doi: 10.1016/j.eswa.2023.122166.
[9] J. L. Sarkar, A. Majumder, C. R. Panigrahi, S. Roy, and B. Pati, “Tourism recommendation system: a survey and future research directions,” Multimed. Tools Appl., vol. 82, no. 6, pp. 8983–9027, 2023, doi: 10.1007/s11042-022-12167-w.
[10] Z. Li, Y. Chen, X. Zhang, and X. Liang, “BookGPT: A General Framework for Book Recommendation Empowered by Large Language Model,” Electron., vol. 12, no. 22, pp. 1–19, 2023, doi: 10.3390/electronics12224654.
[11] C. Wu, F. Wu, Y. Huang, and X. Xie, “Personalized News Recommendation: Methods and Challenges,” ACM Trans. Inf. Syst., vol. 41, no. 1, pp. 1–50, Jan. 2023, doi: 10.1145/3530257.
[12] A. Yashudas, D. Gupta, G. C. Prashant, A. Dua, D. AlQahtani, and A. S. K. Reddy, “DEEP-CARDIO: Recommendation System for Cardiovascular Disease Prediction Using IoT Network,” IEEE Sens. J., vol. 24, no. 9, pp. 14539–14547, 2024, doi: 10.1109/JSEN.2024.3373429.
[13] K. Sharma et al., “A Survey of Graph Neural Networks for Social Recommender Systems,” ACM Comput. Surv., vol. 56, no. 10, pp. 1–34, Oct. 2024, doi: 10.1145/3661821.
[14] F. L. da Silva, B. K. Slodkowski, K. K. A. da Silva, and S. C. Cazella, “A systematic literature review on educational recommender systems for teaching and learning: research trends, limitations and opportunities,” Educ. Inf. Technol., vol. 28, no. 3, pp. 3289–3328, 2023, doi: 10.1007/s10639-022-11341-9.
[15] Y. Koren, S. Rendle, and R. Bell, “Advances in Collaborative Filtering,” in Recommender Systems Handbook, F. Ricci, L. Rokach, and B. Shapira, Eds. New York, NY: Springer US, 2022, pp. 91–142, doi: 10.1007/978-1-0716-2197-4_3.
[16] H. Khojamli and J. Razmara, “Survey of similarity functions on neighborhood-based collaborative filtering,” Expert Syst. Appl., vol. 185, p. 115482, 2021, doi: 10.1016/j.eswa.2021.115482.
[17] H. Liu, Y. Wang, Z. Zhang, J. Deng, C. Chen, and L. Y. Zhang, “Matrix factorization recommender based on adaptive Gaussian differential privacy for implicit feedback,” Inf. Process. Manag., vol. 61, no. 4, p. 103720, 2024, doi: 10.1016/j.ipm.2024.103720.
[18] Z. Fayyaz, M. Ebrahimian, D. Nawara, A. Ibrahim, and R. Kashef, “Recommendation Systems: Algorithms, Challenges, Metrics, and Business Opportunities,” Appl. Sci., vol. 10, no. 7748, pp. 1–20, 2020, doi: 10.3390/app10217748.
[19] Q. Yu, M. Zhao, and Y. Luo, “Collaborative Filtering Hybrid Recommendation Algorithm based on Optimal Weight,” in 2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI), 2022, pp. 144–147, doi: 10.1109/ICCEAI55464.2022.00038.
[20] P. Li, J. Cao, Z. Guan, and F. Hang, “Collaborative Filtering Hybrid Recommendation Algorithm Based on Improved Score Similarity,” in 2023 8th International Conference on Intelligent Computing and Signal Processing (ICSP), 2023, pp. 1328–1332, doi: 10.1109/ICSP58490.2023.10248224.
[21] A. M. Shetty, D. H. Manjaiah, M. F. Aljunid, and K. M. Yogesh, “Comparative Analysis of Memory-Based Collaborative Filtering and Deep Learning Models for Resolving Cold Start and Data Sparsity Issues in E-commerce Recommender Systems,” 2024 IEEE 3rd World Conf. Appl. Intell. Comput. AIC 2024, pp. 81–87, 2024, doi: 10.1109/AIC61668.2024.10730916.
[22] T. M. A. U. Gunathilaka, P. D. Manage, J. Zhang, Y. Li, and W. Kelly, “Addressing sparse data challenges in recommendation systems: A systematic review of rating estimation using sparse rating data and profile enrichment techniques,” Intell. Syst. with Appl., vol. 25, no. January, p. 200474, 2025, doi: 10.1016/j.iswa.2024.200474.
[23] G. Behera, N. Nain, and R. K. Soni, “Integrating user-side information into matrix factorization to address data sparsity of collaborative filtering,” Multimed. Syst., vol. 30, no. 2, pp. 1–18, 2024, doi: 10.1007/s00530-024-01261-8.
[24] S. M. Choi, D. Lee, K. Jang, C. Park, and S. Lee, “Improving Data Sparsity in Recommender Systems Using Matrix Regeneration with Item Features,” Mathematics, vol. 11, no. 2, pp. 1–26, 2023, doi: 10.3390/math11020292.
[25] W. Shi and Y. Zhang, “Personalized Recommendation for Online News Based on UBCF and IBCF Algorithms,” Int. J. Adv. Comput. Sci. Appl., vol. 16, no. 4, pp. 326–337, 2025, doi: 10.14569/IJACSA.2025.0160434.
[26] D. V, H. I, and V. K. K, “Enhanced Hybrid UBCF-IBCF Recommender Systems Using Pearson and Cosine Similarities for Improved Accuracy,” in 2024 International Conference on Sustainable Communication Networks and Application (ICSCNA), 2024, pp. 1037–1044, doi: 10.1109/ICSCNA63714.2024.10863870.
[27] J. Velumani, H. Mohmedmhdi, K. S., T. A. S. Srinivas, and H. D. Praveena, “Movies Recommendation System using User-Based Collaborative Filtering for Social Network Analysis,” in 2025 3rd International Conference on Data Science and Information System (ICDSIS), 2025, pp. 1–5, doi: 10.1109/ICDSIS65355.2025.11070953.
[28] N. Azri, A. Haddi, and A. Azri, “Enhancing Recommender Systems through Hybrid Fusion of SVD/SVD++ and k-Nearest Neighbors,” in 2023 14th International Conference on Intelligent Systems: Theories and Applications (SITA), 2023, pp. 1–7–1–7, doi: 10.1109/SITA60746.2023.10373705.
[29] Z. T. Yap, S. C. Haw, and N. E. Binti Ruslan, “Hybrid-based food recommender system utilizing KNN and SVD approaches,” Cogent Eng., vol. 11, no. 1, p., 2024, doi: 10.1080/23311916.2024.2436125.
[30] M. M. ul Haque, B. Kotaiah, and J. Ahamed, “Hybrid course recommendation system using SVD, NMF and attention-based neural network,” Int. J. Inf. Technol., vol. 17, no. 4, pp. 2449–2456, 2025, doi: 10.1007/s41870-025-02440-0.
[31] Aamana, N. Iltaf, H. Afzal, and Q. U. Ain, “Co-Clustering based Hybrid Collaborative Filtering Model,” 4th Int. Conf. Commun. Technol. ComTech 2023, pp. 18–27, 2023, doi: 10.1109/ComTech57708.2023.10165021.
[32] D. K. Behera, M. Das, S. Swetanisha, and P. K. Sethy, “Hybrid model for movie recommendation system using content K-nearest neighbors and restricted boltzmann machine,” Indones. J. Electr. Eng. Comput. Sci., vol. 23, no. 1, pp. 445–452, 2021, doi: 10.11591/ijeecs.v23.i1.pp445-452.
[33] N. M. Khairudin, N. Mustapha, T. N. M. Aris, and M. Zolkepli, “Hybrid machine learning model based on feature decomposition and entropy optimization for higher accuracy flood forecasting,” Int. J. Adv. Intell. Informatics, vol. 10, no. 1, pp. 1–12, 2024, doi: 10.26555/ijain.v10i1.1130.
[34] A. Sonule, H. Jagtap, and V. Mendhe, “Weighted Hybrid Recommendation System,” Int. J. Res. Anal. Rev., no. March, p. 402, 2024. [Online]. Available at: https://www.researchgate.net/publication/378846446_Weighted_Hybrid_Recommendation_System.
[35] C. Song, Q. Yu, E. Jose, J. Zhuang, and H. Geng, “A hybrid recommendation approach for viral food based on online reviews,” Foods, vol. 10, no. 8, 2021, doi: 10.3390/foods10081801.
[36] S. S. E. Alqallaf, W. M. Medhat, and T. A. El-Shishtawy, “A Hybrid Recommender Framework for Selecting a Course Reference Books,” J. Theor. Appl. Inf. Technol., vol. 100, no. 4, pp. 1004–1014, 2022.[Online]. Available at: http://www.jatit.org/volumes/Vol100No4/10Vol100No4.pdf.
[37] A. A. Amer, H. I. Abdalla, and L. Nguyen, “Enhancing recommendation systems performance using highly-effective similarity measures,” Knowledge-Based Syst., vol. 217, p. 106842, 2021, doi: 10.1016/j.knosys.2021.106842.
[38] A. Fareed, S. Hassan, S. B. Belhaouari, and Z. Halim, “A collaborative filtering recommendation framework utilizing social networks,” Mach. Learn. with Appl., vol. 14, no. January, p. 100495, 2023, doi: 10.1016/j.mlwa.2023.100495.
[39] A. Gazdar and M. Kefi, “A Recommender System for Linear Satellite TV: Is It Possible?,” in 2020 3rd International Conference on Computer Applications & Information Security (ICCAIS), 2020, pp. 1–8, doi: 10.1109/ICCAIS48893.2020.9096718.
[40] Y. Chen, “A music recommendation system based on collaborative filtering and SVD,” 2022 IEEE Conf. Telecommun. Opt. Comput. Sci. TOCS 2022, pp. 1510–1513, 2022, doi: 10.1109/TOCS56154.2022.10016210.
[41] S. Jiang, J. Li, and W. Zhou, “An Application of SVD++ Method in Collaborative Filtering,” in 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), 2020, pp. 192–197, doi: 10.1109/ICCWAMTIP51612.2020.9317347.
[42] A. Chaudhari, A. A. H. Seddig, A. Sarlan, and R. Raut, “A Hybrid Recommendation System: A Review,” IEEE Access, vol. 12, pp. 157107–157126, 2024, doi: 10.1109/ACCESS.2024.3480693.
[43] B. Sabiri, A. Khtira, B. El Asri, and M. Rhanoui, “Hybrid Quality-Based Recommender Systems: A Systematic Literature Review,” Journal of Imaging, vol. 11, no. 1. 2025, doi: 10.3390/jimaging11010012.
[44] R. Widayanti, M. H. R. Chakim, C. Lukita, U. Rahardja, and N. Lutfiani, “Improving Recommender Systems using Hybrid Techniques of Collaborative Filtering and Content-Based Filtering,” J. Appl. Data Sci., vol. 4, no. 3, pp. 289–302, 2023, doi: 10.47738/jads.v4i3.115.
[45] O. Remadnia, F. Maazouzi, and D. Chefrour, “Hybrid Book Recommendation System Using Collaborative Filtering and Embedding Based Deep Learning,” Inform., vol. 49, no. 8, pp. 189–204, 2025, doi: 10.31449/inf.v49i8.6950.
[46] C. C. Aggarwal, Recommender Systems. Springer International Publishing AG Switzerland, 2016, p. 489, doi: 10.1007/978-3-319-29659-3.
[47] M. M. Rahman, I. A. Shama, M. S. Rahman, and M. R. Nabil, “Hybrid Recommendation System To Solve Cold,” J. Theor. Appl. Inf. Technol., vol. 100, no. 11, pp. 3562–3578, 2022. [Online]. Available at: http://www.jatit.org/volumes/Vol100No11/7Vol100No11.pdf.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571 (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
andri.pranolo.id@ieee.org (publication issues)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0