(2) Jyothi Thomas (CHRIST (Deemed to be University), India)
*corresponding author
AbstractCervical cancer ranks as the fourth most prevalent malignancy among women globally. Timely identification and intervention in cases of cervical cancer hold the potential for achieving complete remission and cure. In this study, we built a deep learning model based on self-attention mechanism using transformer architecture to classify the cervix images to help in diagnosis of cervical cancer. We have used techniques like an enhanced multivariate gaussian mixture model optimized with mexican axolotl algorithm for segmenting the colposcope images prior to the Temporal Lesion Convolution Neural Network (TelsNet) classifying the images. TelsNet is a transformer-based neural network that uses temporal convolutional neural networks to identify cancerous regions in colposcope images. Our experiments show that TelsNet achieved an accuracy of 92.7%, with a sensitivity of 73.4% and a specificity of 82.1%. We compared the performance of our model with various state-of-the-art methods, and our results demonstrate that TelsNet outperformed the other methods. The findings have the potential to significantly simplify the process of detecting and accurately classifying cervical cancers at an early stage, leading to improved rates of remission and better overall outcomes for patients globally.
KeywordsTransformer architecture; Deep learning; Cervical cancer; Colposcopy Lesions
|
DOIhttps://doi.org/10.26555/ijain.v9i3.1431 |
Article metricsAbstract views : 498 | PDF views : 89 |
Cite |
Full TextDownload |
References
[1] P. Xue et al., “Deep learning in image-based breast and cervical cancer detection: a systematic review and meta-analysis,” npj Digit. Med., vol. 5, no. 1, p. 19, Feb. 2022, doi: 10.1038/s41746-022-00559-z.
[2] H. Sung et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA. Cancer J. Clin., vol. 71, no. 3, pp. 209–249, May 2021, doi: 10.3322/caac.21660.
[3] A. C. Rodriguez et al., “Longitudinal Study of Human Papillomavirus Persistence and Cervical Intraepithelial Neoplasia Grade 2/3: Critical Role of Duration of Infection,” JNCI J. Natl. Cancer Inst., vol. 102, no. 5, pp. 315–324, Mar. 2010, doi: 10.1093/jnci/djq001.
[4] X. Chao et al., “Efficacy of different surgical approaches in the clinical and survival outcomes of patients with early-stage cervical cancer: protocol of a phase III multicentre randomised controlled trial in China,” BMJ Open, vol. 9, no. 7, p. e029055, Jul. 2019, doi: 10.1136/bmjopen-2019-029055.
[5] M. Gultekin, P. T. Ramirez, N. Broutet, and R. Hutubessy, “World Health Organization call for action to eliminate cervical cancer globally,” Int. J. Gynecol. Cancer, vol. 30, no. 4, pp. 426–427, Apr. 2020, doi: 10.1136/ijgc-2020-001285.
[6] A. Srinath, F. van Merode, S. V. Rao, and M. Pavlova, “Barriers to cervical cancer and breast cancer screening uptake in low- and middle-income countries: a systematic review,” Health Policy Plan., vol. 38, no. 4, pp. 509–527, Apr. 2023, doi: 10.1093/heapol/czac104.
[7] A. Traverso et al., “Sensitivity of radiomic features to inter-observer variability and image pre-processing in Apparent Diffusion Coefficient (ADC) maps of cervix cancer patients,” Radiother. Oncol., vol. 143, pp. 88–94, Feb. 2020, doi: 10.1016/j.radonc.2019.08.008.
[8] F. A. Stuebs et al., “Concordance Rate of Colposcopy in Detecting Cervical Intraepithelial Lesions,” Diagnostics, vol. 12, no. 10, p. 2436, Oct. 2022, doi: 10.3390/diagnostics12102436.
[9] L. Pleş, J.-C. Radosa, R.-M. Sima, R. Chicea, O.-G. Olaru, and M.-O. Poenaru, “The Accuracy of Cytology, Colposcopy and Pathology in Evaluating Precancerous Cervical Lesions,” Diagnostics, vol. 12, no. 8, p. 1947, Aug. 2022, doi: 10.3390/diagnostics12081947.
[10] C. Nakisige et al., “Artificial intelligence and visual inspection in cervical cancer screening,” Int. J. Gynecol. Cancer, vol. 33, no. 10, pp. 1515–1521, Oct. 2023, doi: 10.1136/ijgc-2023-004397.
[11] B. Hunter, S. Hindocha, and R. W. Lee, “The Role of Artificial Intelligence in Early Cancer Diagnosis,” Cancers (Basel)., vol. 14, no. 6, p. 1524, Mar. 2022, doi: 10.3390/cancers14061524.
[12] Y. Kumar, S. Gupta, R. Singla, and Y.-C. Hu, “A Systematic Review of Artificial Intelligence Techniques in Cancer Prediction and Diagnosis,” Arch. Comput. Methods Eng., vol. 29, no. 4, pp. 2043–2070, Jun. 2022, doi: 10.1007/s11831-021-09648-w.
[13] C. Yang, L. Qin, Y. Xie, and J. Liao, “Deep learning in CT image segmentation of cervical cancer: a systematic review and meta-analysis,” Radiat. Oncol., vol. 17, no. 1, p. 175, Nov. 2022, doi: 10.1186/s13014-022-02148-6.
[14] Y. Singh, D. Srivastava, P. S. Chandranand, and D. S. Singh, “Algorithms for screening of Cervical Cancer: A chronological review,” Mach. Learn. arXiv, p. 10, Nov. 2018. [Online]. Available at: https://arxiv.org/abs/1811.00849v1.
[15] Y. Cao et al., “A deep learning-based method for cervical transformation zone classification in colposcopy images,” Technol. Heal. Care, vol. 31, no. 2, pp. 527–538, Mar. 2023, doi: 10.3233/THC-220141.
[16] Z. Yue, S. Ding, X. Li, S. Yang, and Y. Zhang, “Automatic Acetowhite Lesion Segmentation via Specular Reflection Removal and Deep Attention Network,” IEEE J. Biomed. Heal. Informatics, vol. 25, no. 9, pp. 3529–3540, Sep. 2021, doi: 10.1109/JBHI.2021.3064366.
[17] R. Perkins et al., “Comparison of accuracy and reproducibility of colposcopic impression based on a single image versus a two-minute time series of colposcopic images,” Gynecol. Oncol., vol. 167, no. 1, pp. 89–95, Oct. 2022, doi: 10.1016/j.ygyno.2022.08.001.
[18] C. P. N. Khuong et al., “Rapid and efficient characterization of cervical collagen orientation using linearly polarized colposcopic images,” J. Innov. Opt. Health Sci., vol. 16, no. 05, p. 16, Sep. 2023, doi: 10.1142/S1793545822410012.
[19] M. P. Recht et al., “Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations,” Eur. Radiol., vol. 30, no. 6, pp. 3576–3584, Jun. 2020, doi: 10.1007/s00330-020-06672-5.
[20] D. P. Mysona et al., “Applying Artificial Intelligence to Gynecologic Oncology: A Review,” Obstet. Gynecol. Surv., vol. 76, no. 5, pp. 292–301, May 2021, doi: 10.1097/OGX.0000000000000902.
[21] S. Guerriero et al., “Artificial intelligence (AI) in the detection of rectosigmoid deep endometriosis,” Eur. J. Obstet. Gynecol. Reprod. Biol., vol. 261, pp. 29–33, Jun. 2021, doi: 10.1016/j.ejogrb.2021.04.012.
[22] PDQ Adult Treatment Editorial Board, “Vaginal Cancer Treatment (PDQ®): Patient Version,” PDQ Cancer Information Summaries, 2002. [Online]. Available at: https://www.cancer.gov/types/vaginal/patient/vaginal-treatment-pdq.
[23] M. Akazawa and K. Hashimoto, “Artificial Intelligence in Ovarian Cancer Diagnosis,” Anticancer Res., vol. 40, no. 8, pp. 4795–4800, Aug. 2020, doi: 10.21873/anticanres.14482.
[24] M. Toğaçar, “Detection of segmented uterine cancer images by Hotspot Detection method using deep learning models, Pigeon-Inspired Optimization, types-based dominant activation selection approaches,” Comput. Biol. Med., vol. 136, p. 104659, Sep. 2021, doi: 10.1016/j.compbiomed.2021.104659.
[25] M. M. Kalbhor and S. V. Shinde, “Cervical cancer diagnosis using convolution neural network: feature learning and transfer learning approaches,” Soft Comput., pp. 1–11, Jul. 2023, doi: 10.1007/s00500-023-08969-1.
[26] S. M. Fragomeni et al., “2022-RA-1299-ESGO How to predict preoperative risk of lymph node metastasis in vulvar cancer patients the Morphonode Predictive Model,” in Vaginal and vulvar cancer, Oct. 2022, vol. 32, no. Suppl 2, p. A445.2-A446, doi: 10.1136/ijgc-2022-ESGO.961.
[27] B. Bai, P.-Z. Liu, Y.-Z. Du, and Y.-M. Luo, “Automatic segmentation of cervical region in colposcopic images using K-means,” Australas. Phys. Eng. Sci. Med., vol. 41, no. 4, pp. 1077–1085, Dec. 2018, doi: 10.1007/s13246-018-0678-z.
[28] G. Peng, H. Dong, T. Liang, L. Li, and J. Liu, “Diagnosis of cervical precancerous lesions based on multimodal feature changes,” Comput. Biol. Med., vol. 130, p. 104209, Mar. 2021, doi: 10.1016/j.compbiomed.2021.104209.
[29] L. Yan et al., “Multi-state colposcopy image fusion for cervical precancerous lesion diagnosis using BF-CNN,” Biomed. Signal Process. Control, vol. 68, p. 102700, Jul. 2021, doi: 10.1016/j.bspc.2021.102700.
[30] M. N. Asiedu et al., “Development of Algorithms for Automated Detection of Cervical Pre-Cancers With a Low-Cost, Point-of-Care, Pocket Colposcope,” IEEE Trans. Biomed. Eng., vol. 66, no. 8, pp. 2306–2318, Aug. 2019, doi: 10.1109/TBME.2018.2887208.
[31] S. Y. Park, D. Sargent, R. Lieberman, and U. Gustafsson, “Domain-Specific Image Analysis for Cervical Neoplasia Detection Based on Conditional Random Fields,” IEEE Trans. Med. Imaging, vol. 30, no. 3, pp. 867–878, Mar. 2011, doi: 10.1109/TMI.2011.2106796.
[32] T. Xu et al., “Multi-feature based benchmark for cervical dysplasia classification evaluation,” Pattern Recognit., vol. 63, pp. 468–475, Mar. 2017, doi: 10.1016/j.patcog.2016.09.027.
[33] T. Chen et al., “Multi-Modal Fusion Learning For Cervical Dysplasia Diagnosis,” in 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Apr. 2019, vol. 2019-April, pp. 1505–1509, doi: 10.1109/ISBI.2019.8759303.
[34] W. Li, S. Venkataraman, U. Gustafsson, J. C. Oyama, D. G. Ferris, and R. W. Lieberman, “Using acetowhite opacity index for detecting cervical intraepithelial neoplasia,” J. Biomed. Opt., vol. 14, no. 1, p. 014020, 2009, doi: 10.1117/1.3079810.
[35] S. Young Park et al., “Automated image analysis of digital colposcopy for the detection of cervical neoplasia,” J. Biomed. Opt., vol. 13, no. 1, p. 014029, Jan. 2008, doi: 10.1117/1.2830654.
[36] Y. Li et al., “Computer-Aided Cervical Cancer Diagnosis Using Time-Lapsed Colposcopic Images,” IEEE Trans. Med. Imaging, vol. 39, no. 11, pp. 3403–3415, Nov. 2020, doi: 10.1109/TMI.2020.2994778.
[37] H. Yu et al., “Segmentation of the cervical lesion region in colposcopic images based on deep learning,” Front. Oncol., vol. 12, p. 952847, Aug. 2022, doi: 10.3389/fonc.2022.952847.
[38] Y.-Q. Liu, X. Du, H.-L. Shen, and S.-J. Chen, “Estimating Generalized Gaussian Blur Kernels for Out-of-Focus Image Deblurring,” IEEE Trans. Circuits Syst. Video Technol., vol. 31, no. 3, pp. 829–843, Mar. 2021, doi: 10.1109/TCSVT.2020.2990623.
[39] L. Liu et al., “Computer-aided diagnostic system based on deep learning for classifying colposcopy images,” Ann. Transl. Med., vol. 9, no. 13, pp. 1045–1045, Jul. 2021, doi: 10.21037/atm-21-885.
[40] X. Wang et al., “Integration of Global and Local Features for Specular Reflection Inpainting in Colposcopic Images,” J. Healthc. Eng., vol. 2021, pp. 1–11, Jul. 2021, doi: 10.1155/2021/5401308.
[41] D.-F. Shen, J.-J. Guo, G.-S. Lin, and J.-Y. Lin, “Content-aware specular reflection suppression based on adaptive image inpainting and neural network for endoscopic images,” Comput. Methods Programs Biomed., vol. 192, p. 105414, Aug. 2020, doi: 10.1016/j.cmpb.2020.105414.
[42] L. Li, X. Li, S. Yang, S. Ding, A. Jolfaei, and X. Zheng, “Unsupervised-Learning-Based Continuous Depth and Motion Estimation With Monocular Endoscopy for Virtual Reality Minimally Invasive Surgery,” IEEE Trans. Ind. Informatics, vol. 17, no. 6, pp. 3920–3928, Jun. 2021, doi: 10.1109/TII.2020.3011067.
[43] Y. Villuendas-Rey, J. L. Velázquez-Rodríguez, M. D. Alanis-Tamez, M.-A. Moreno-Ibarra, and C. Yáñez-Márquez, “Mexican Axolotl Optimization: A Novel Bioinspired Heuristic,” Mathematics, vol. 9, no. 7, p. 781, Apr. 2021, doi: 10.3390/math9070781.
[44] A. Hashemi, M. Bagher Dowlatshahi, and H. Nezamabadi-Pour, “Gravitational Search Algorithm,” in Handbook of AI-based Metaheuristics, Boca Raton: CRC Press, 2021, pp. 119–150, doi: 10.1201/9781003162841-7.
[45] Y. Wang, S. Gao, Y. Yu, Z. Cai, and Z. Wang, “A gravitational search algorithm with hierarchy and distributed framework,” Knowledge-Based Syst., vol. 218, p. 106877, Apr. 2021, doi: 10.1016/j.knosys.2021.106877.
[46] J. Liu, L. Li, and L. Wang, “Acetowhite region segmentation in uterine cervix images using a registered ratio image,” Comput. Biol. Med., vol. 93, pp. 47–55, Feb. 2018, doi: 10.1016/j.compbiomed.2017.12.009.
[47] J. Kim, C. M. Park, S. Y. Kim, and A. Cho, “Convolutional neural network-based classification of cervical intraepithelial neoplasias using colposcopic image segmentation for acetowhite epithelium,” Sci. Rep., vol. 12, no. 1, p. 17228, Oct. 2022, doi: 10.1038/s41598-022-21692-5.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571 (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
andri.pranolo.id@ieee.org (publication issues)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0