(2) Yosia Adi Susetyo
(3) * Hanna Arini Parhusip
(4) Bambang Susanto
*corresponding author
AbstractThe Human Capital Decision Intelligence (HDCI) system integrates human-computer interaction in a microbiology laboratory that uses machine learning and operational research to classify new tasks and then recommend assignments to each person. The models evaluated in building this system are Support Vector Machine, Gaussian Naive Bayes, Multinomial Logistic Regression, and Artificial Neural Network. The results of the research show that the ANN model is the most consistent and reliable across various training ratios, as indicated by the model's goodness parameters. The selected ANN model is combined with a linear programming approach to optimize workload distribution. The integrated system successfully manages new job scenarios and recommends staff based on competencies and availability. It also ensures assignments do not exceed maximum workload limits and finds alternatives when key staff are unavailable. The implementation of the HDCI system has a positive impact on various factors, including the fair distribution of tasks, enhanced staff performance monitoring, and significantly improved operational efficiency and human resource management in the microbiology laboratory. The system is designed to be easy to use and support collaboration between laboratory staff and computational models. The system is not only advanced in supporting personnel management decision-making, but it can also demonstrate how artificial intelligence and operations research systems can be combined to address the needs of the microbiology laboratory environment.
KeywordsMachine Learning; Operations Research; Personnel Assignment ; Human Resource Management; Optimization
|
DOIhttps://doi.org/10.26555/ijain.v11i4.1676 |
Article metricsAbstract views : 145 | PDF views : 40 |
Cite |
Full Text Download
|
References
[1] T. Islam et al., “Predictive modeling for breast cancer classification in the context of Bangladeshi patients by use of machine learning approach with explainable AI,” Sci. Rep., vol. 14, no. 1, pp. 1–17, 2024, doi: 10.1038/s41598-024-57740-5.
[2] N. H. Haron, R. Mahmood, N. M. Amin, A. Ahmad, and S. R. Jantan, “An Artificial Intelligence Approach to Monitor and Predict Student Academic Performance,” J. Adv. Res. Appl. Sci. Eng. Technol., vol. 44, no. 1, pp. 105–119, 2025, doi: 10.37934/araset.44.1.105119.
[3] J. Cock, D. Jiménez, H. Dorado, and T. Oberthür, “Operations research and machine learning to manage risk and optimize production practices in agriculture: good and bad experience,” Curr. Opin. Environ. Sustain., vol. 62, p. 101278, 2023, doi: 10.1016/j.cosust.2023.101278.
[4] A. Ouhadi, Z. Yahouni, and M. Di Mascolo, “Integrating machine learning and operations research methods for scheduling problems: A bibliometric analysis and literature review,” IFAC-PapersOnLine, vol. 58, no. 19, pp. 946–951, 2024, doi: 10.1016/j.ifacol.2024.09.155.
[5] G. M. Rao, D. Ramesh, V. Sharma, A. Sinha, M. M. Hassan, and A. H. Gandomi, “AttGRU-HMSI: enhancing heart disease diagnosis using hybrid deep learning approach,” Sci. Rep., vol. 14, no. 1, pp. 1–19, 2024, doi: 10.1038/s41598-024-56931-4.
[6] S. Patel, S. Kumar, S. Katiyar, R. Shanmugam, and R. Chaudhary, “MongoDB Versus MySQL: A Comparative Study of Two Python Login Systems Based on Data Fetching Time,” Res. Intell. Comput. Eng., vol. 1254, pp. 57–64, 2020, doi: 10.1007/978-981-15-7527-3_6.
[7] A. F. Hassan, S. Barakat, and A. Rezk, “Towards a deep learning-based outlier detection approach in the context of streaming data,” J. Big Data, vol. 9, no. 1, 2022, doi: 10.1186/s40537-022-00670-8.
[8] E. Kalbaliyev and S. Rustamov, “Learning Algorithms with Character-Based Similarity,” Digit. Interact. Mach. Intell., vol. 9–10, pp. 11–19, 2020, doi: 10.1007/978-3-030-74728-2.
[9] K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing and data augmentation techniques,” Glob. Transitions Proc., vol. 3, no. 1, pp. 91–99, Jun. 2022, doi: 10.1016/j.gltp.2022.04.020.
[10] M. Z. Al-Taie, S. Kadry, and J. P. Lucas, “Online data preprocessing: A case study approach,” Int. J. Electr. Comput. Eng., vol. 9, no. 4, pp. 2620–2626, 2019, doi: 10.11591/ijece.v9i4.pp2620-2626.
[11] B. Y. Ong, R. Wen, and A. N. Zhang, “Data blending in manufacturing and supply chains,” Proc. - 2016 IEEE Int. Conf. Big Data, Big Data 2016, pp. 3773–3778, 2016, doi: 10.1109/BigData.2016.7841047.
[12] W. Hidayat, E. Utami, and A. D. Hartanto, “Effect of Stemming Nazief Adriani on the Ratcliff/Obershelp algorithm in identifying level of similarity between slang and formal words,” 2020 3rd Int. Conf. Inf. Commun. Technol. ICOIACT 2020, pp. 22–27, 2020, doi: 10.1109/ICOIACT50329.2020.9331973.
[13] M. Groen-Xu, G. Bös, P. A. Teixeira, T. Voigt, and B. Knapp, “Short-term incentives of research evaluations: Evidence from the UK Research Excellence Framework,” Res. Policy, vol. 52, no. 6, p. 104729, 2023, doi: 10.1016/j.respol.2023.104729.
[14] S. Cohen, The basics of machine learning: strategies and techniques. Elsevier Inc., 2021, doi: 10.1016/B978-0-323-67538-3.00002-6.
[15] J. Jiang and K. Srinivasan, “MoreThanSentiments: A text analysis package[Formula presented],” Softw. Impacts, vol. 15, no. December 2022, p. 100456, 2023, doi: 10.1016/j.simpa.2022.100456.
[16] N. D. Lynn and A. W. R. Emanuel, “Using Data Mining Techniques to Predict Students’ Performance. a Review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1096, no. 1, p. 012083, 2021, doi: 10.1088/1757-899x/1096/1/012083.
[17] Q. A. B. K. Zaman, W. N. S. B. W. Yusoff, and Q. B. B. A. Shah, “Sentiment Analysis on The Place of Interest in Malaysia,” J. Adv. Res. Appl. Sci. Eng. Technol., vol. 43, no. 1, pp. 54–65, 2025, doi: 10.37934/araset.43.1.5465.
[18] H. Waheed, S. U. Hassan, N. R. Aljohani, J. Hardman, S. Alelyani, and R. Nawaz, “Predicting academic performance of students from VLE big data using deep learning models,” Comput. Human Behav., vol. 104, 2020, doi: 10.1016/j.chb.2019.106189.
[19] Z. P. Ma et al., “A study on the application of radiomics based on cardiac MR non-enhanced cine sequence in the early diagnosis of hypertensive heart disease,” BMC Med. Imaging, vol. 24, no. 1, pp. 1–9, 2024, doi: 10.1186/s12880-024-01301-9.
[20] Y. Wang, X. Yao, D. Wang, C. Ye, and L. Xu, “A machine learning screening model for identifying the risk of high-frequency hearing impairment in a general population,” BMC Public Health, vol. 24, no. 1, pp. 1–14, 2024, doi: 10.1186/s12889-024-18636-1.
[21] B. Hui and K. L. Chiew, “An Improved Network Intrusion Detection Method Based On CNN-LSTM-SA,” J. Adv. Res. Appl. Sci. Eng. Technol., vol. 44, no. 1, pp. 225–238, 2025, doi: 10.37934/araset.44.1.225238.
[22] A. F. Rochim, R. Kusumastuti, and I. P. Windasari, “Comparison of Feature Selection for Naive Bayes Classification Method in A Case Study of the Corona virus Lockdown,” 2021 Int. Conf. Data Sci. Its Appl. ICoDSA 2021, pp. 215–220, 2021, doi: 10.1109/ICoDSA53588.2021.9617471.
[23] A. Afdhaluzzikri, H. Mawengkang, and O. S. Sitompul, “Perfomance analysis of Naive Bayes method with data weighting,” SinkrOn, vol. 7, no. 3, pp. 817–821, 2022, doi: 10.33395/sinkron.v7i3.11516.
[24] M. Ferdowsi et al., “Classification of vasovagal syncope from physiological signals on tilt table testing,” Biomed. Eng. Online, vol. 23, no. 1, pp. 1–22, 2024, doi: 10.1186/s12938-024-01229-9.
[25] M. M. Shariati et al., “Development, comparison, and internal validation of prediction models to determine the visual prognosis of patients with open globe injuries using machine learning approaches,” BMC Med. Inform. Decis. Mak., vol. 24, no. 1, pp. 1–14, 2024, doi: 10.1186/s12911-024-02520-4.
[26] D. A. Musleh et al., “Twitter arabic sentiment analysis to detect depression using machine learning,” Comput. Mater. Contin., vol. 71, no. 2, pp. 3463–3477, 2022, doi: 10.32604/cmc.2022.022508.
[27] S. H. Lee, H. Lee, and J. H. Kim, “Enhancing the Prediction of User Satisfaction with Metaverse Service Through Machine Learning,” Comput. Mater. Contin., vol. 72, no. 3, pp. 4983–4997, 2022, doi: 10.32604/cmc.2022.027943.
[28] C. M. Zhou, Q. Xue, H. J. Li, J. J. Yang, and Y. Zhu, “A predictive model for post-thoracoscopic surgery pulmonary complications based on the PBNN algorithm,” Sci. Rep., vol. 14, no. 1, pp. 1–8, 2024, doi: 10.1038/s41598-024-57700-z.
[29] S. Liu, R. Chang, J. Zuo, R. J. Webber, F. Xiong, and N. Dong, “Application of artificial neural networks in construction management: Current status and future directions,” Appl. Sci., vol. 11, no. 20, 2021, doi: 10.3390/app11209616.
[30] D. Z. Mohammed, “Optical Add-Drop Multiplexers: Enhancing High Transmission Bit Rates in Next-Generation Communication Networks,” J. Adv. Res. Appl. Sci. Eng. Technol., vol. 43, no. 1, pp. 251–262, 2025, doi: 10.37934/araset.43.1.251262.
[31] M. Soori, B. Arezoo, and R. Dastres, “Artificial neural networks in supply chain management, a review,” J. Econ. Technol., vol. 1, no. October 2023, pp. 179–196, 2023, doi: 10.1016/j.ject.2023.11.002.
[32] J. Reynolds, M. W. Ahmad, Y. Rezgui, and J. L. Hippolyte, “Operational supply and demand optimisation of a multi-vector district energy system using artificial neural networks and a genetic algorithm,” Appl. Energy, vol. 235, no. October 2018, pp. 699–713, 2019, doi: 10.1016/j.apenergy.2018.11.001.
[33] K. Rau, K. Eggensperger, F. Schneider, P. Hennig, and T. Scholten, “How can we quantify, explain, and apply the uncertainty of complex soil maps predicted with neural networks?,” Sci. Total Environ., vol. 944, no. June, p. 173720, 2024, doi: 10.1016/j.scitotenv.2024.173720.
[34] P. Tabarzadi and A. Ghaemi, “Modeling and optimization of CO2 capture in spray columns via artificial neural networks and response surface methodology,” Case Stud. Chem. Environ. Eng., vol. 10, no. June, p. 100783, 2024, doi: 10.1016/j.cscee.2024.100783.
[35] M. L. Bynum et al., Pyomo – Optimization Modeling in Python, 3rd ed., vol. 67, pp. 1-27. Mexico: Springer, 2020, doi: 10.1007/978-3-030-68928-5_5.
[36] M. Löppenberg, S. Yuwono, M. R. Diprasetya, and A. Schwung, “Dynamic robot routing optimization: State–space decomposition for operations research-informed reinforcement learning,” Robot. Comput. Integr. Manuf., vol. 90, no. February, p. 102812, 2024, doi: 10.1016/j.rcim.2024.102812.
[37] O. Peretz, M. Koren, and O. Koren, “Naive Bayes classifier – An ensemble procedure for recall and precision enrichment,” Eng. Appl. Artif. Intell., vol. 136, no. PB, p. 108972, 2024, doi: 10.1016/j.engappai.2024.108972.
[38] M. Hajihosseinlou, A. Maghsoudi, and R. Ghezelbash, “A semi-supervised approach for mineral prospectivity mapping via weighted positive-unlabeled learning and tree-structured parzen estimator for hyperparameter optimization,” Ore Geol. Rev., vol. 185, no. December 2024, p. 106783, 2025, doi: 10.1016/j.oregeorev.2025.106783.
[39] W. Wang, L. Yan, F. Liu, and Y. Li, “Improving Gaussian Naive Bayes classification on imbalanced data through coordinate-based minority feature mining,” PeerJ Comput. Sci., vol. 11, p. e3003, 2025, doi: 10.7717/peerj-cs.3003.
[40] N. Aydın, O. A. Erdem, and A. Tekerek, “Comparative Analysis of Traditional Machine Learning and Transformer-based Deep Learning Models for Text Classification,” Politek. Derg., vol. 28, no. 2, pp. 445–452, 2025, doi: 10.2339/politeknik.1469530.
[41] H. Li, “Machine learning optimization for vocational literacy education evaluation : A big data-powered decision support system,” Alexandria Eng. J., vol. 129, no. August, pp. 1258–1271, 2025, doi: 10.1016/j.aej.2025.08.029.
[42] N. Peiffer-Smadja et al., “Determinants of sustainable adoption in primary care of a clinical decision support system for antimicrobial prescribing: A qualitative study,” Infect. Dis. Now, vol. 55, no. 7, p. 105157, 2025, doi: 10.1016/j.idnow.2025.105157.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571 (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
andri.pranolo.id@ieee.org (publication issues)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

























Download