
(2) * Tio Dharmawan

(3) Muhamad Arief Hidayat

*corresponding author
AbstractIn the computer vision and machine learning field, especially for gender classification based on facial images, feature extraction is one of the inseparable parts. Various features can be extracted from images, including texture features. Several prior studies show that the Linde Buzo gray vector quantization (LBG-VQ) and Multi-block local binary pattern (MB-LBP) methods can extract texture features from images. The LBG-VQ produces less optimal performance in gender classification on the FEI facial images dataset. On the other hand, the MB-LBP produces more optimal performance when applied to the FERET facial images dataset. Therefore, this study was conducted to discover the gender classification performance when the LBG-VQ and MB-LBP methods are implemented independently or in combination on the FEI facial images dataset. Three preprocessing stages are involved before extracting images' features: noise removal, illumination adjustment, and image conversion from RGB to grayscale. The extracted features are then used as training material for several classification methods, namely Naïve Bayes, SVM, KNN, Random Forest, and Logistic Regression. Then, the K-Fold Cross Validation method is used to evaluate the trained models. This study discovered that the implementation of MB-LBP tends to show a performance improvement compared to the LBG-VQ. Furthermore, the most optimal classification model, with a performance of 91.928%, was formed by implementing Logistic Regression with MB-LBP on LBG-VQ quantized images. In conclusion, this study successfully formed an optimized gender classification model based on the FEI facial images dataset.
KeywordsComputer Vision; Feature Extraction; Machine Learning; Gender Classification; Linde Buzo Gray Vector Quantization; Multi Block Local Binary Pattern
|
DOIhttps://doi.org/10.26555/ijain.v11i1.1827 |
Article metricsAbstract views : 983 | PDF views : 149 |
Cite |
Full Text![]() |
References
[1] A. Swaminathan, M. Chaba, D. K. Sharma, and Y. Chaba, “Gender Classification using Facial Embeddings: A Novel Approach,” Procedia Comput. Sci., vol. 167, pp. 2634–2642, 2020, doi: 10.1016/j.procs.2020.03.342.
[2] S. R. Shinde and S. Thepade, “Gender Classification from Face Images Using LBG Vector Quantization with Data Mining Algorithms,” in 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Aug. 2018, pp. 1–5, doi: 10.1109/ICCUBEA.2018.8697784.
[3] L. Tianyu, L. Fei, and W. Rui, “Human face gender identification system based on MB-LBP,” in 2018 Chinese Control And Decision Conference (CCDC), Jun. 2018, pp. 1721–1725, doi: 10.1109/CCDC.2018.8407405.
[4] A. Bakshi et al., “Performance Augmentation of Cuckoo Search Optimization Technique Using Vector Quantization in Image Compression,” Mathematics, vol. 11, no. 10, p. 2364, May 2023, doi: 10.3390/math11102364.
[5] M. Bilal, Z. Ullah, O. Mujahid, and T. Fouzder, “Fast Linde–Buzo–Gray (FLBG) Algorithm for Image Compression through Rescaling Using Bilinear Interpolation,” J. Imaging, vol. 10, no. 5, p. 124, May 2024, doi: 10.3390/jimaging10050124.
[6] S. Alizadeh, H. B. Jond, V. V. Nabiyev, and C. Kose, “Automatic Retrieval of Shoeprints Using Modified Multi-Block Local Binary Pattern,” Symmetry (Basel)., vol. 13, no. 2, p. 296, Feb. 2021, doi: 10.3390/sym13020296.
[7] M. S. Karis, N. R. A. Razif, N. M. Ali, M. A. Rosli, M. S. M. Aras, and M. M. Ghazaly, “Local Binary Pattern (LBP) with application to variant object detection: A survey and method,” in 2016 IEEE 12th International Colloquium on Signal Processing & Its Applications (CSPA), Mar. 2016, pp. 221–226, doi: 10.1109/CSPA.2016.7515835.
[8] Wu Jiang, Fei Ding, and Qiao-Liang Xiang, “An affinity propagation based method for vector quantization codebook design,” in 2008 19th International Conference on Pattern Recognition, Dec. 2008, pp. 1–4, doi: 10.1109/ICPR.2008.4761392.
[9] I. A. Siradjuddin, H. A. Achmani, and A. Muntasa, “Adaptive Boosting Classifier for Pedestrian Attributes Identification with Color and Texture Features,” in 2018 International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM), Nov. 2018, pp. 275–279, doi: 10.1109/CENIM.2018.8710845.
[10] “FEI Face Database,” FEI. https://fei.edu.br/~cet/facedatabase.html.
[11] M. G. Tatuin, Y. P. . Kelen, and S. S. Manek, “Pengaruh Ukuran Jendela Ketetanggaan (Window) Terhadap Hasil Redukasi Noise pada Metode Median Filter dan Gaussian Filter,” J. Krisnadana, vol. 3, no. 3, pp. 142–154, May 2024, doi: 10.58982/krisnadana.v3i3.601.
[12] H. H. Draz, N. E. Elashker, and M. M. A. Mahmoud, “Optimized Algorithms and Hardware Implementation of Median Filter for Image Processing,” Circuits, Syst. Signal Process., vol. 42, no. 9, pp. 5545–5558, Sep. 2023, doi: 10.1007/s00034-023-02370-x.
[13] K. Mishiba, “Fast Guided Median Filter,” IEEE Trans. Image Process., vol. 32, pp. 737–749, 2023, doi: 10.1109/TIP.2022.3232916.
[14] B. Bataineh, “Image contrast enhancement for preserving entropy and image visual features,” Int. J. Adv. Intell. Informatics, vol. 9, no. 2, p. 161, Jul. 2023, doi: 10.26555/ijain.v9i2.907.
[15] P. Härtinger and C. Steger, “Adaptive histogram equalization in constant time,” J. Real-Time Image Process., vol. 21, no. 3, p. 93, Jun. 2024, doi: 10.1007/s11554-024-01465-1.
[16] R. M. Dyke and K. Hormann, “Histogram equalization using a selective filter,” Vis. Comput., vol. 39, no. 12, pp. 6221–6235, Dec. 2023, doi: 10.1007/s00371-022-02723-8.
[17] D. Xiang, H. Wang, D. He, and C. Zhai, “Research on Histogram Equalization Algorithm Based on Optimized Adaptive Quadruple Segmentation and Cropping of Underwater Image (AQSCHE),” IEEE Access, vol. 11, pp. 69356–69365, 2023, doi: 10.1109/ACCESS.2023.3290201.
[18] U. Lakshmi Sowjanya and R. Krithiga, “Decoding Student Emotions: An Advanced CNN Approach for Behavior Analysis Application Using Uniform Local Binary Pattern,” IEEE Access, vol. 12, pp. 106273–106284, 2024, doi: 10.1109/ACCESS.2024.3436531.
[19] Dewi Widyawati and Amaliah Faradibah, “Comparison Analysis of Classification Model Performance in Lung Cancer Prediction Using Decision Tree, Naive Bayes, and Support Vector Machine,” Indones. J. Data Sci., vol. 4, no. 2, pp. 80–89, Jul. 2023, doi: 10.56705/ijodas.v4i2.76.
[20] S. Naiem, A. E. Khedr, A. M. Idrees, and M. I. Marie, “Enhancing the Efficiency of Gaussian Naïve Bayes Machine Learning Classifier in the Detection of DDOS in Cloud Computing,” IEEE Access, vol. 11, pp. 124597–124608, 2023, doi: 10.1109/ACCESS.2023.3328951.
[21] I. Akil and I. Chaidir, “Classification of Heart Disease Diagnoses Using Gaussian Naïve Bayes,” Komputasi J. Ilm. Ilmu Komput. dan Mat., vol. 21, no. 2, pp. 31–36, Aug. 2024, doi: 10.33751/komputasi.v21i2.10114.
[22] C. D. Suhendra, E. Najwaini, E. Maria, and E. Faizal, “A Machine Learning Perspective on Daisy and Dandelion Classification: Gaussian Naive Bayes with Sobel,” Indones. J. Data Sci., vol. 4, no. 3, pp. 151–159, Dec. 2023, doi: 10.56705/ijodas.v4i3.112.
[23] M Hafidz Ariansyah, Esmi Nur Fitri, and Sri Winarno, “Improving Performance Of Students’ Grade Classification Model Uses Naïve Bayes Gaussian Tuning Model And Feature Selection,” J. Tek. Inform., vol. 4, no. 3, pp. 493–501, Jun. 2023, doi: 10.52436/1.jutif.2023.4.3.737.
[24] H. K. Easa, A. A. Saber, N. K. Hamid, and H. A. Saber, “Machine learning based approach for detection of fake banknotes using support vector machine,” Indones. J. Electr. Eng. Comput. Sci., vol. 31, no. 2, p. 1016, Aug. 2023, doi: 10.11591/ijeecs.v31.i2.pp1016-1022.
[25] M. D. Purbolaksono, D. T. B. Pratama, and F. Hamzah, “Perbandingan Gini Index dan Chi Square pada Sentimen Analsis Ulasan Film menggunakan Support Vector Machine Classifier,” J. Edukasi dan Penelit. Inform., vol. 9, no. 3, p. 528, Dec. 2023, doi: 10.26418/jp.v9i3.68845.
[26] Y. Yan, X. Le, T. Yang, and H. Yu, “Interpretable PCA and SVM-Based Leak Detection Algorithm for Identifying Water Leakage Using SAR-Derived Moisture Content and InSAR Closure Phase,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 17, pp. 15136–15147, 2024, doi: 10.1109/JSTARS.2024.3443127.
[27] D. T. Wilujeng, M. Fatekurohman, and I. M. Tirta, “Analisis Risiko Kredit Perbankan Menggunakan Algoritma K-Nearest Neighbor dan Nearest Weighted K-Nearest Neighbor,” Indones. J. Appl. Stat., vol. 5, no. 2, p. 142, Oct. 2023, doi: 10.13057/ijas.v5i2.58426.
[28] U. Suriani and T. B. Kurniawan, “Comparing the Prediction of Numeric Patterns on Form C1 Using the K-Nearest Neighbors (K-NN) Method and a Combination of K-Nearest Neighbors (K-NN) with Connected Component Labeling (CCL),” J. Inf. Syst. Informatics, vol. 5, no. 4, pp. 1569–1580, Dec. 2023, doi: 10.51519/journalisi.v5i4.592.
[29] I. G. Iwan Sudipa, R. A. Azdy, I. Arfiani, N. M. Setiohardjo, and Sumiyatun, “Leveraging K-Nearest Neighbors for Enhanced Fruit Classification and Quality Assessment,” Indones. J. Data Sci., vol. 5, no. 1, pp. 30–36, Mar. 2024, doi: 10.56705/ijodas.v5i1.125.
[30] F. T. Admojo, M. L. Radhitya, H. Zein, and A. Naswin, “Classification of Mushroom Edibility Using K-Nearest Neighbors: A Machine Learning Approach,” Indones. J. Data Sci., vol. 5, no. 3, pp. 243–250, Dec. 2024, doi: 10.56705/ijodas.v5i3.199.
[31] I. Ilham, “Predicting Plant Growth Stages Using Random Forest Classifier: A Machine Learning Approach,” Indones. J. Data Sci., vol. 5, no. 2, Jul. 2024, doi: 10.56705/ijodas.v5i2.167.
[32] M. Mafarja et al., “Classification framework for faulty-software using enhanced exploratory whale optimizer-based feature selection scheme and random forest ensemble learning,” Appl. Intell., vol. 53, no. 15, pp. 18715–18757, Aug. 2023, doi: 10.1007/S10489-022-04427-X/TABLES/12.
[33] T. E. Tarigan, E. Susanti, M. I. Siami, I. Arfiani, A. A. Jiwa Permana, and I. M. Sunia Raharja, “Performance Metrics of AdaBoost and Random Forest in Multi-Class Eye Disease Identification: An Imbalanced Dataset Approach,” Int. J. Artif. Intell. Med. Issues, vol. 1, no. 2, pp. 84–94, Nov. 2023, doi: 10.56705/ijaimi.v1i2.98.
[34] Siti Khomsah and Edi Faizal, “Effectiveness Evaluation of the RandomForest Algorithm in Classifying CancerLips Data,” Int. J. Artif. Intell. Med. Issues, vol. 1, no. 1, pp. 10–17, May 2023, doi: 10.56705/ijaimi.v1i1.84.
[35] A. Hadianfar et al., “Predictors of in-hospital mortality among patients with symptoms of stroke, Mashhad, Iran: an application of auto-logistic regression model,” Arch. Public Heal., vol. 81, no. 1, p. 73, Apr. 2023, doi: 10.1186/s13690-023-01084-5.
[36] G. Bordeaux and A. Couto, “A binary logistic regression model to identify key aspects that enhance global hub airports status,” J. Air Transp. Res. Soc., vol. 3, p. 100035, Dec. 2024, doi: 10.1016/j.jatrs.2024.100035.
[37] D. M. A. S. Elkahwagy, C. J. Kiriacos, and M. Mansour, “Logistic regression and other statistical tools in diagnostic biomarker studies,” Clin. Transl. Oncol., vol. 26, no. 9, pp. 2172–2180, Mar. 2024, doi: 10.1007/s12094-024-03413-8.
[38] S. Park, E. Ceulemans, and K. Van Deun, “Logistic regression with sparse common and distinctive covariates,” Behav. Res. Methods, vol. 55, no. 8, pp. 4143–4174, Feb. 2023, doi: 10.3758/s13428-022-02011-2.
[39] I. Alwiah, U. Zaky, and A. W. Murdiyanto, “Assessing the Predictive Power of Logistic Regression on Liver Disease Prevalence in the Indian Context,” Indones. J. Data Sci., vol. 5, no. 1, pp. 1–7, Mar. 2024, doi: 10.56705/ijodas.v5i1.121.
[40] T. Ait tchakoucht, B. Elkari, Y. Chaibi, and T. Kousksou, “Random forest with feature selection and K-fold cross validation for predicting the electrical and thermal efficiencies of air based photovoltaic-thermal systems,” Energy Reports, vol. 12, pp. 988–999, Dec. 2024, doi: 10.1016/j.egyr.2024.07.002.
[41] K. Takahashi, K. Yamamoto, A. Kuchiba, and T. Koyama, “Confidence interval for micro-averaged F1 and macro-averaged F1 scores,” Appl. Intell., vol. 52, no. 5, pp. 4961–4972, Mar. 2022, doi: 10.1007/s10489-021-02635-5

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571 (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
andri.pranolo.id@ieee.org (publication issues)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0