LC Map: a robust chaotic function for enhancing cryptographic security through key sensitivity and randomness analysis

(1) * Makmun Makmun Mail (Gunadarma University, Indonesia)
(2) Suryadi MT Mail (Department of Mathematics, Universitas Indonesia, Depok, Indonesia)
(3) Sarifuddin Madenda Mail (Department of Mathematics, Universitas Indonesia, Depok, Indonesia)
*corresponding author

Abstract


The security of digital image data has become increasingly critical in modern communication systems. While chaos-based cryptography offers a promising solution, many existing algorithms lack rigorous security validation. This paper introduces the Logistic-Circle Map (LC Map), a novel one-dimensional compound chaotic system designed to provide a robust and efficient foundation for image encryption. By composing the Logistic Map and the Circle Map, the LC Map exhibits a broader chaotic range and higher dynamical complexity. The performance and security of an LC Map-based encryption scheme are extensively validated using a comprehensive dataset of 24 digital images. Security analysis demonstrates that the algorithm is highly resistant to brute-force, statistical, and differential attacks. It provides a vast key space and demonstrates very strong key sensitivity, both confirmed through experimental evaluation. Test results show near-ideal performance on standard security metrics, with a Number of Pixels Change Rate (NPCR) approaching 99.6%, a Unified Average Changing Intensity (UACI) approaching 33.4%, and an information entropy value nearing the theoretical maximum of 8. Further quantitative comparative analysis demonstrates the superiority of the LC Map in balancing security and computational efficiency. Thus, the LC Map is presented as a rigorously validated component for the development of future image cryptosystems.

Keywords


bifurcation diagrams; Lyapunov exponent; LC Map; Key Space; Brute force attack

   

DOI

https://doi.org/10.26555/ijain.v11i4.1854
      

Article metrics

Abstract views : 205 | PDF views : 7

   

Cite

   

Full Text

Download

References


[1] S. T. Ahmed, D. A. Hammood, R. F. Chisab, A. Al-Naji, and J. Chahl, “Medical Image Encryption: A Comprehensive Review,” Computers, vol. 12, no. 8, pp. 1–45, 2023, doi: 10.3390/computers12080160.

[2] F. Asiri et al., “Enhancing medical image privacy in IoT with bit-plane level encryption using chaotic map,” Front. Comput. Neurosci., vol. 19, pp. 1–15, Jun. 2025, doi: 10.3389/fncom.2025.1591972.

[3] S. Choudhary, “Analysis of Cryptography Encryption for Network Security and Image Steganography Technique,” Int. J. Sci. Res. Eng. Manag. (IJSREM, no. October, p. 7, 2023, doi: 10.55041/IJSREM26359.

[4] A. A. Shukur, A. A. Neamah, V. T. Pham, and G. Grassi, “A novel chaotic system with one absolute term: stability, ultimate boundedness, and image encryption,” Heliyon, vol. 11, no. 1, p. e37239, 2025, doi: 10.1016/j.heliyon.2024.e37239.

[5] Y. Niu, H. Zhou, and X. Zhang, “Image encryption scheme based on improved four-dimensional chaotic system and evolutionary operators,” Sci. Rep., vol. 14, no. 1, pp. 1–21, 2024, doi: 10.1038/s41598-024-57756-x.

[6] D. Ravichandran, W. S. L. Jebarani, H. Mahalingam, P. V. Meikandan, P. Pravinkumar, and R. Amirtharajan, “An efficient medical data encryption scheme using selective shuffling and inter-intra pixel diffusion IoT-enabled secure E-healthcare framework,” Sci. Rep., vol. 15, no. 1, pp. 1–25, 2025, doi: 10.1038/s41598-025-85539-5.

[7] K. Song, N. Imran, J. Y. Chen, and A. C. Dobbins, “A Hybrid Chaos-Based Cryptographic Framework for Post-Quantum Secure Communications,” arXiv, pp. 1–17, 2025, [Online]. Available at: https://arxiv.org/abs/2504.08618.

[8] A. Al-Hyari, M. Abu-Faraj, C. Obimbo, and M. Alazab, “Chaotic Hénon–Logistic Map Integration: A Powerful Approach for Safeguarding Digital Images,” J. Cybersecurity Priv., vol. 5, no. 1, pp. 1–30, 2025, doi: 10.3390/jcp5010008.

[9] S. Mohi, U. Din, T. Shah, F. Alblehai, S. Nooh, and S. S. Jamal, “A combinatory approach of non-chain ring and henon map for image encryption application,” Sci. Rep., vol. 15, no. 1, pp. 1–21, 2025, doi: 10.1038/s41598-025-85814-5.

[10] L. J. Ibrahim, J. B. Idoko, and A. M. Alwhelat, “Robust Chaos Image Encryption System using Modification Logistic Map, Gingerbread Man and Arnold Cat Map,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 6, pp. 1305–1316, 2024, doi: 10.14569/IJACSA.2024.01506132.

[11] X. D. Liu et al., “Quantum image encryption algorithm based on four-dimensional chaos,” Front. Phys., vol. 12, no. March, pp. 1–12, 2024, doi: 10.3389/fphy.2024.1230294.

[12] L. Wang, W. Song, J. Di, X. Zhang, and C. Zou, “Image Encryption Method Based on Three-Dimensional Chaotic Systems and V-Shaped Scrambling,” Entropy, vol. 27, no. 1, 2025, doi: 10.3390/e27010084.

[13] A. Tiwari, P. Diwan, T. D. Diwan, M. Miroslav, and S. P. Samal, “A compressed image encryption algorithm leveraging optimized 3D chaotic maps for secure image communication,” Sci. Rep., vol. 15, no. 1, pp. 1–16, 2025, doi: 10.1038/s41598-025-95995-8.

[14] S. Kanwal, S. Inam, S. Al-Otaibi, J. Akbar, N. Siddiqui, and M. Ashiq, “An efficient image encryption algorithm using 3D-cyclic chebyshev map and elliptic curve,” Sci. Rep., vol. 14, no. 1, pp. 1–15, 2024, doi: 10.1038/s41598-024-77955-w.

[15] S. Zhou, Y. Wei, S. Wang, H. H. C. Iu, and Y. Zhang, “Novel chaotic image cryptosystem based on dynamic RNA and DNA computing,” J. Appl. Phys., vol. 136, no. 18, 2024, doi: 10.1063/5.0235336.

[16] X. Xie et al., “A CML-ECA Chaotic Image Encryption System Based on Multi-Source Perturbation Mechanism and Dynamic DNA Encoding,” Symmetry (Basel)., vol. 17, no. 7, pp. 1–26, 2025, doi: 10.3390/sym17071042.

[17] C. Tang, S. Wang, Y. Shu, and F. Ren, “Encryption algorithm based on improved four-dimensional chaotic system and dynamic DNA encoding,” AIP Adv., vol. 14, no. 9, pp. 1–16, Sep. 2024, doi: 10.1063/5.0207225.

[18] A. Shafique et al., “A hybrid encryption framework leveraging quantum and classical cryptography for secure transmission of medical images in IoT-based telemedicine networks,” Sci. Rep., vol. 14, no. 1, pp. 1–24, 2024, doi: 10.1038/s41598-024-82256-3.

[19] U. Shahid, S. Kanwal, M. Bano, S. Inam, M. E. M. Abdalla, and Z. A. Shaikh, “Blockchain driven medical image encryption employing chaotic tent map in cloud computing,” Sci. Rep., vol. 15, no. 1, p. 6236, Feb. 2025, doi: 10.1038/s41598-025-90502-5.

[20] S. Inam, S. Kanwal, R. Firdous, and F. Hajjej, “Blockchain based medical image encryption using Arnold’s cat map in a cloud environment,” Sci. Rep., vol. 14, no. 1, pp. 1–22, 2024, doi: 10.1038/s41598-024-56364-z.

[21] S. A. Jabber, A. Al-Adhami, R. K. Hasoun, R. S. Ali, and S. H. Hashem, “Proposal to strength image encryption using blockchain and hybrid chaotic-DNA techniques,” Egypt. Informatics J., vol. 32, no. August, p. 100765, 2025, doi: 10.1016/j.eij.2025.100765.

[22] S. Huang, G. Deng, L. Liu, and X. Li, “Technique for Enhancing the Chaotic Characteristics of Chaotic Maps Using Delayed Coupling and Its Application in Image Encryption,” Mathematics, vol. 11, no. 15, p. 3295, Jul. 2023, doi: 10.3390/math11153295.

[23] E. Güvenoğlu, “An image encryption algorithm based on multi-layered chaotic maps and its security analysis,” Conn. Sci., vol. 36, no. 1, pp. 1–31, Dec. 2024, doi: 10.1080/09540091.2024.2312108.

[24] A. Abba, J. Sen Teh, and M. Alawida, “Towards accurate keyspace analysis of chaos-based image ciphers,” Multimed. Tools Appl., vol. 83, no. 33, pp. 79047–79066, 2024, doi: 10.1007/s11042-024-18628-8.

[25] I. Mursidah, S. Mt, and S. Madenda, “A new chaos function development through the combination of Circle map and MS map,” ITM Web Conf., vol. 61, p. 01005, 2024, doi: 10.1051/itmconf/20246101005.

[26] H. Zhang, W. Sun, and L. Lu, “Chaotic encryption algorithm with scrambling diffusion based on the Josephus cycle,” Front. Phys., vol. 11, no. May, pp. 1–16, 2023, doi: 10.3389/fphy.2023.1191793.

[27] M. Riaz et al., “Secure and Fast Image Encryption Algorithm Based on Modified Logistic Map,” Inf., vol. 15, no. 3, pp. 1–20, 2024, doi: 10.3390/info15030172.

[28] H. A. Hosham and T. N. Alharthi, “Bifurcation and chaos in simple discontinuous systems separated by a hypersurface,” AIMS Math., vol. 9, no. 7, pp. 17025–17038, 2024, doi: 10.3934/math.2024826.

[29] N. Kumar and S. Saini, “Intelligent Systems And Applications In Engineering Image Encryption Model based on Chaotic Henon Map and Termite Alate Optimization Algorithm,” vol. 12, pp. 428–436, 2024, doi: 10.1080/03772063.2024.2390667.

[30] M. A. Alkhonaini, E. Gemeay, F. M. Zeki Mahmood, M. Ayari, F. A. Alenizi, and S. Lee, “A new encryption algorithm for image data based on two-way chaotic maps and iterative cellular automata,” Sci. Rep., vol. 14, no. 1, pp. 1–15, 2024, doi: 10.1038/s41598-024-64741-x.

[31] N. El Ghouate et al., “A high-entropy image encryption scheme using optimized chaotic maps with Josephus permutation strategy,” Sci. Rep., vol. 15, no. 1, pp. 1–26, 2025, doi: 10.1038/s41598-025-14784-5.

[32] K. M. Hosny, Y. M. Elnabawy, R. A. Salama, and A. M. Elshewey, “Multiple image encryption algorithm using channel randomization and multiple chaotic maps,” Sci. Rep., vol. 14, no. 1, pp. 1–18, 2024, doi: 10.1038/s41598-024-79282-6.

[33] S. M. Mohamed, W. S. Sayed, A. H. Madian, A. G. Radwan, and L. A. Said, “An Encryption Application and FPGA Realization of a Fractional Memristive Chaotic System,” Electronics, vol. 12, no. 5, p. 1219, Mar. 2023, doi: 10.3390/electronics12051219.

[34] A. Daoui, M. Yamni, S. A. Chelloug, M. A. Wani, and A. A. A. El-Latif, “Efficient Image Encryption Scheme Using Novel 1D Multiparametric Dynamical Tent Map and Parallel Computing,” Mathematics, vol. 11, no. 7, p. 1589, Mar. 2023, doi: 10.3390/math11071589.

[35] W. Alexan et al., “A new multiple image encryption algorithm using hyperchaotic systems, SVD, and modified RC5,” Sci. Rep., vol. 15, no. 1, pp. 1–33, 2025, doi: 10.1038/s41598-025-92065-x.

[36] S. Kumar and D. Sharma, “A chaotic based image encryption scheme using elliptic curve cryptography and genetic algorithm,” Artif. Intell. Rev., vol. 57, no. 4, p. 87, Mar. 2024, doi: 10.1007/s10462-024-10719-0.

[37] Magfirawaty Magfirawaty, Ariska Allamanda, Malika Ayunasari, and Muhammad Nadhif Zulfikar, “Confusion and Diffusion Techniques for Image Encryption Process Based on Chaos System,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 13, no. 2, pp. 93–100, 2024, doi: 10.22146/jnteti.v13i2.9623.

[38] S. Zhu, X. Deng, W. Zhang, and C. Zhu, “Image Encryption Scheme Based on Newly Designed Chaotic Map and Parallel DNA Coding,” Mathematics, vol. 11, no. 1, p. 231, Jan. 2023, doi: 10.3390/math11010231.

[39] S. Kumari, M. Dua, S. Dua, and D. Dhingra, “A novel Cosine-Cosine chaotic map-based video encryption scheme,” J. Eng. Appl. Sci., vol. 71, no. 1, pp. 1–17, 2024, doi: 10.1186/s44147-024-00376-z.

[40] M. Turan, E. Gökçay, and H. Tora, “An unrestricted Arnold’s cat map transformation,” Multimed. Tools Appl., vol. 83, no. 28, pp. 70921–70935, 2024, doi: 10.1007/s11042-024-18411-9.

[41] J. Tang, F. Zhang, and H. Ni, “A novel fast image encryption scheme based on a new one-dimensional compound sine chaotic system,” Vis. Comput., vol. 39, no. 10, pp. 4955–4983, 2023, doi: 10.1007/s00371-022-02640-w.

[42] S. Sun, W. Yang, Y. Yin, X. Tian, G. Li, and X. Deng, “A color image encryption scheme utilizing a logistic-sine chaotic map and cellular automata,” Sci. Rep., vol. 15, no. 1, pp. 1–21, 2025, doi: 10.1038/s41598-025-04968-4.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571  (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
 andri.pranolo.id@ieee.org (publication issues)

View IJAIN Stats

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0