Finding a suitable chest x-ray image size for the process of Machine learning to build a model for predicting Pneumonia

(1) * Kriengsak Yothapakdee Mail (Department of Computer Science, Faculty of Science and Technology, Loei Rajabhat University, Thailand)
(2) Yosawaj Pugtao Mail (Internal Medicine Department, Chumphae Hospital, Chum Phae District, Khon Kaen, Thailand)
(3) Sarawoot Charoenkhun Mail (Hospital Director of Khok-Nong-Kae, Health Promoting Hospital of Wangsaphung District, Thailand)
(4) Tanunchai Boonnuk Mail (Department of Public Health, Faculty of Science and Technology, Loei Rajabhat University, Thailand)
(5) Kreangsak Tamee Mail (Department of Computer Science and Information Technology, Faculty of Science, Naresuan University, Thailand)
*corresponding author

Abstract


This study focused on algorithm performance and training/testing time, evaluating the most suitable chest X-ray image size for machine learning models to predict pneumonia infection. The neural network algorithm achieved an accuracy rate of 87.00% across different image sizes. While larger images generally yield better results, there is a decline in performance beyond a certain size. Lowering the image resolution to 32x32 pixels significantly reduces performance to 83.00% likely due to the loss of diagnostic features. Furthermore, this study emphasizes the relationship between image size and processing time, empirically revealing that both increasing and decreasing image size beyond the optimal point results in increased training and testing time. The performance was noted with 299x299 pixel images completing the process in seconds. Our results indicate a balance between efficiency, as larger images slightly improved accuracy but slowed down speed, while smaller images negatively impacted precision and effectiveness. These findings assist in optimizing chest X-ray image sizes for pneumonia prediction models by weighing diagnostic accuracy against computational resources.

Keywords


Chest X-ray; Suitable size; Covid-19; Machine learning; Predictive model

   

DOI

https://doi.org/10.26555/ijain.v11i1.1897
      

Article metrics

Abstract views : 912 | PDF views : 233

   

Cite

   

Full Text

Download

References


[1] M. Bundea and G. M. Danciu, “Pneumonia Image Classification Using DenseNet Architecture,” Information, vol. 15, no. 10, p. 611, Oct. 2024, doi: 10.3390/info15100611.

[2] S. W. Teklu and B. S. Kotola, “Insight into the treatment strategy on pneumonia transmission with asymptotic carrier stage using fractional order modeling approach,” Comput. Methods Programs Biomed. Updat., vol. 5, p. 100134, Jan. 2024, doi: 10.1016/j.cmpbup.2024.100134.

[3] “Pneumonia,” Wold Health Organization, 2025. [Online]. Available at: https://www.who.int/health-topics/pneumonia/#tab=tab_1.

[4] S. Santos et al., “The SARS-CoV-2 test scale-up in the USA: an analysis of the number of tests produced and used over time and their modelled impact on the COVID-19 pandemic,” Lancet Public Heal., vol. 10, no. 1, pp. e47–e57, Jan. 2025, doi: 10.1016/S2468-2667(24)00279-2.

[5] J. Zhang, X. Dong, G. Liu, and Y. Gao, “Risk and Protective Factors for COVID-19 Morbidity, Severity, and Mortality,” Clin. Rev. Allergy Immunol., vol. 64, no. 1, pp. 90–107, Jan. 2022, doi: 10.1007/s12016-022-08921-5.

[6] “Infection prevention and control guideline for coronavirus disease 2019 (COVID-19): Executive summary, 21 December 2023,” World Health Organization (WHO), 2023. [Online]. Available at: https://www.who.int/publications/i/item/WHO-2019-nCoV-IPC-guideline-summary-2023.4.

[7] K. Cheng, C. Wu, S. Gu, Y. Lu, H. Wu, and C. Li, “WHO declares end of COVID-19 global health emergency: lessons and recommendations from the perspective of ChatGPT/GPT-4,” Int. J. Surg., vol. 109, no. 9, pp. 2859–2862, May 2023, doi: 10.1097/JS9.0000000000000521.

[8] A. S. M. Roknuzzaman, R. Sarker, and M. R. Islam, “The World Health Organization has endorsed COVID?19 is no longer a global public health emergency: How they took this step and what we should do right now?,” Int. J. Health Plann. Manage., vol. 38, no. 5, pp. 1595–1598, Sep. 2023, doi: 10.1002/hpm.3668.

[9] C. Tian, L. Balmer, and X. Tan, “COVID-19 lessons to protect populations against future pandemics by implementing PPPM principles in healthcare,” EPMA J., vol. 14, no. 3, pp. 329–340, Jul. 2023, doi: 10.1007/s13167-023-00331-7.

[10] M. M. Ibrahim, “Chest X-ray Findings in Community-acquired Pneumonia,” Mustansiriya Med. J., vol. 22, no. 2, pp. 217–223, Jul. 2023, doi: 10.4103/mj.mj_52_23.

[11] J. Yao et al., “EVA-X: A Foundation Model for General Chest X-ray Analysis with Self-supervised Learning,” arxiv Artif. Intell., pp. 1–27, 2024, [Online]. Available at: http://arxiv.org/abs/2405.05237.

[12] Muhammad Suliman, F. Malik, M. Q. Khan, Ashraf Ullah, N. Rahman, and S. K. Shah, “A Convolutional Neural Network (CNN) Based Framework for Enhanced Diagnosis and Classification of COVID-19 Pneumonia,” VAWKUM Trans. Comput. Sci., vol. 12, no. 2, pp. 220–240, Dec. 2024, doi: 10.21015/vtcs.v12i2.1999.

[13] M. I. U. Haque, A. K. Dubey, I. Danciu, A. C. Justice, O. S. Ovchinnikova, and J. D. Hinkle, “Effect of image resolution on automated classification of chest X-rays,” J. Med. Imaging, vol. 10, no. 04, p. 044503, Aug. 2023, doi: 10.1117/1.JMI.10.4.044503.

[14] S. Rajaraman, F. Yang, G. Zamzmi, Z. Xue, and S. Antani, “Assessing the Impact of Image Resolution on Deep Learning for TB Lesion Segmentation on Frontal Chest X-rays,” Diagnostics, vol. 13, no. 4, p. 747, Feb. 2023, doi: 10.3390/diagnostics13040747.

[15] A. Olar, A. Biricz, Z. Bed?házi, B. Sulyok, P. Pollner, and I. Csabai, “Automated prediction of COVID-19 severity upon admission by chest X-ray images and clinical metadata aiming at accuracy and explainability,” Sci. Rep., vol. 13, no. 1, p. 4226, Mar. 2023, doi: 10.1038/s41598-023-30505-2.

[16] M. Pal, S. Parija, G. Panda, S. Mishra, R. K. Mohapatra, and K. Dhama, “COVID-19 Prognosis from Chest X-ray Images by using Deep Learning Approaches: A Next Generation Diagnostic Tool,” J. Pure Appl. Microbiol., vol. 17, no. 2, pp. 919–930, Jun. 2023, doi: 10.22207/JPAM.17.2.20.

[17] S. M. Baik, K. S. Hong, and D. J. Park, “Deep learning approach for early prediction of COVID-19 mortality using chest X-ray and electronic health records,” BMC Bioinformatics, vol. 24, no. 1, p. 190, May 2023, doi: 10.1186/s12859-023-05321-0.

[18] C. C. Ukwuoma et al., “Deep learning framework for rapid and accurate respiratory COVID-19 prediction using chest X-ray images,” J. King Saud Univ. - Comput. Inf. Sci., vol. 35, no. 7, p. 101596, Jul. 2023, doi: 10.1016/j.jksuci.2023.101596.

[19] B. B. Reddy, M. V. Sudhakar, P. R. Reddy, and P. R. Reddy, “Ensemble deep honey architecture for COVID-19 prediction using CT scan and chest X-ray images,” Multimed. Syst., vol. 29, no. 4, pp. 2009–2035, Aug. 2023, doi: 10.1007/s00530-023-01072-3.

[20] Z. Liu and L. Shen, “CECT: Controllable ensemble CNN and transformer for COVID-19 image classification,” Comput. Biol. Med., vol. 173, p. 108388, May 2024, doi: 10.1016/j.compbiomed.2024.108388.

[21] T. Chen et al., “A vision transformer machine learning model for COVID-19 diagnosis using chest X-ray images,” Healthc. Anal., vol. 5, p. 100332, Jun. 2024, doi: 10.1016/j.health.2024.100332.

[22] A. Echtioui and Y. Ben Ayed, “Automated detection of COVID-19 based on transfer learning,” Multimed. Tools Appl., vol. 83, no. 11, pp. 33731–33751, Sep. 2023, doi: 10.1007/s11042-023-17023-z.

[23] M. Abdullah, F. berhe Abrha, B. Kedir, and T. Tamirat Tagesse, “A Hybrid Deep Learning CNN model for COVID-19 detection from chest X-rays,” Heliyon, vol. 10, no. 5, p. e26938, Mar. 2024, doi: 10.1016/j.heliyon.2024.e26938.

[24] K. Akyol, “ETSVF-COVID19: efficient two-stage voting framework for COVID-19 detection,” Neural Comput. Appl., vol. 36, no. 29, pp. 18277–18295, Oct. 2024, doi: 10.1007/s00521-024-10150-0.

[25] D. I. Morís, J. de Moura, J. Novo, and M. Ortega, “Adapted generative latent diffusion models for accurate pathological analysis in chest X-ray images,” Med. Biol. Eng. Comput., vol. 62, no. 7, pp. 2189–2212, Jul. 2024, doi: 10.1007/s11517-024-03056-5.

[26] S. Asif, Y. Wenhui, K. Amjad, H. Jin, Y. Tao, and S. Jinhai, “Detection of COVID-19 from chest X-ray images: Boosting the performance with convolutional neural network and transfer learning,” Expert Syst., vol. 40, no. 1, p. e13099, Jan. 2023, doi: 10.1111/exsy.13099.

[27] S. Shastri, I. Kansal, S. Kumar, K. Singh, R. Popli, and V. Mansotra, “CheXImageNet: a novel architecture for accurate classification of Covid-19 with chest x-ray digital images using deep convolutional neural networks,” Health Technol. (Berl)., vol. 12, no. 1, pp. 193–204, Jan. 2022, doi: 10.1007/s12553-021-00630-x.

[28] A. Hayat, P. Baglat, F. Mendonça, S. S. Mostafa, and F. Morgado-Dias, “Novel Comparative Study for the Detection of COVID-19 Using CT Scan and Chest X-ray Images,” Int. J. Environ. Res. Public Health, vol. 20, no. 2, p. 1268, Jan. 2023, doi: 10.3390/ijerph20021268.

[29] M. M. M. Alghamdi, M. Y. H. Dahab, and N. H. A. Alazwary, “Enhancing deep learning techniques for the diagnosis of the novel coronavirus (COVID-19) using X-ray images,” Cogent Eng., vol. 10, no. 1, Dec. 2023, doi: 10.1080/23311916.2023.2181917.

[30] I. Kanjanasurat, K. Tenghongsakul, B. Purahong, and A. Lasakul, “CNN–RNN Network Integration for the Diagnosis of COVID-19 Using Chest X-ray and CT Images,” Sensors, vol. 23, no. 3, p. 1356, Jan. 2023, doi: 10.3390/s23031356.

[31] S. Sarp et al., “An XAI approach for COVID-19 detection using transfer learning with X-ray images,” Heliyon, vol. 9, no. 4, p. e15137, Apr. 2023, doi: 10.1016/j.heliyon.2023.e15137.

[32] G. M. Salama, A. Mohamed, and M. K. Abd-Ellah, “COVID-19 classification based on a deep learning and machine learning fusion technique using chest CT images,” Neural Comput. Appl., vol. 36, no. 10, pp. 5347–5365, Apr. 2024, doi: 10.1007/s00521-023-09346-7.

[33] A. K. Bitto, M. H. I. Bijoy, S. Yesmin, I. Mahmud, M. J. Mia, and K. B. B. Biplob, “Tumor-Net: convolutional neural network modeling for classifying brain tumors from MRI images,” Int. J. Adv. Intell. Informatics, vol. 9, no. 2, p. 148, Apr. 2023, doi: 10.26555/ijain.v9i2.872.

[34] S. Y. Prasetyo, G. Z. Nabiilah, Z. N. Izdihar, and S. M. Isa, “Pneumonia Detection on X-Ray Imaging using Softmax Output in Multilevel Meta Ensemble Algorithm of Deep Convolutional Neural Network Transfer Learning Models,” Int. J. Adv. Intell. Informatics, vol. 9, no. 2, p. 319, Jul. 2023, doi: 10.26555/ijain.v9i2.884.

[35] R. Prince, Z. Niu, Z. Y. Khan, M. Emmanuel, and N. Patrick, “COVID-19 detection from chest X-ray images using CLAHE-YCrCb, LBP, and machine learning algorithms,” BMC Bioinformatics, vol. 25, no. 1, p. 28, Jan. 2024, doi: 10.1186/s12859-023-05427-5.

[36] S. Singh, P. K. Jain, N. Sharma, M. Pohit, and S. Roy, “Atherosclerotic plaque classification in carotid ultrasound images using machine learning and explainable deep learning,” Intell. Med., vol. 4, no. 2, pp. 83–95, May 2024, doi: 10.1016/j.imed.2023.05.003.

[37] Q. Zeng, W. Sun, J. Xu, W. Wan, and L. Pan, “Machine Learning-Based Medical Imaging Detection and Diagnostic Assistance,” Int. J. Comput. Sci. Inf. Technol., vol. 2, no. 1, pp. 36–44, Mar. 2024, doi: 10.62051/ijcsit.v2n1.05.

[38] Song Jiang, Yuan Gu, and Ela Kumar, “Magnetic Resonance Imaging (MRI) Brain Tumor Image Classification Based on Five Machine Learning Algorithms,” Cloud Comput. Data Sci., pp. 122–133, May 2023, doi: 10.37256/ccds.4220232740.

[39] E. Lehtonen et al., “Incremental prognostic value of downstream positron emission tomography perfusion imaging after coronary computed tomography angiography: a study using machine learning,” Eur. Hear. J. - Cardiovasc. Imaging, vol. 25, no. 2, pp. 285–292, Jan. 2024, doi: 10.1093/ehjci/jead246.

[40] H. Nemoto et al., “Evaluation of the performance of both machine learning models using PET and CT radiomics for predicting recurrence following lung stereotactic body radiation therapy: A single?institutional study,” J. Appl. Clin. Med. Phys., vol. 25, no. 7, p. e14322, Jul. 2024, doi: 10.1002/acm2.14322.

[41] Z. Albataineh, F. Aldrweesh, and M. A. Alzubaidi, “COVID-19 CT-images diagnosis and severity assessment using machine learning algorithm,” Cluster Comput., vol. 27, no. 1, pp. 547–562, Feb. 2024, doi: 10.1007/s10586-023-03972-5.

[42] N. Islam et al., “COVID-19 and Pneumonia detection and web deployment from CT scan and X-ray images using deep learning,” PLoS One, vol. 19, no. 7, p. e0302413, Jul. 2024, doi: 10.1371/journal.pone.0302413.

[43] S. K. UmaMaheswaran, F. Ahmad, R. Hegde, A. M. Alwakeel, and S. Rameem Zahra, “Enhanced non-contrast computed tomography images for early acute stroke detection using machine learning approach,” Expert Syst. Appl., vol. 240, p. 122559, Apr. 2024, doi: 10.1016/j.eswa.2023.122559.

[44] S. Anantharajan, S. Gunasekaran, T. Subramanian, and V. R, “MRI brain tumor detection using deep learning and machine learning approaches,” Meas. Sensors, vol. 31, p. 101026, Feb. 2024, doi: 10.1016/j.measen.2024.101026.

[45] K. Morani, E. K. Ayana, and D. Unay, “Covid-19 detection using modified xception transfer learning approach from computed tomography images,” Int. J. Adv. Intell. Informatics, vol. 9, no. 3, p. 524, Nov. 2023, doi: 10.26555/ijain.v9i3.1432.

[46] J. K. Chaw et al., “A predictive analytics model using machine learning algorithms to estimate the risk of shock development among dengue patients,” Healthc. Anal., vol. 5, p. 100290, Jun. 2024, doi: 10.1016/j.health.2023.100290.

[47] Y. Yang, L. Xu, L. Sun, P. Zhang, and S. S. Farid, “Machine learning application in personalised lung cancer recurrence and survivability prediction,” Comput. Struct. Biotechnol. J., vol. 20, pp. 1811–1820, Jan. 2022, doi: 10.1016/j.csbj.2022.03.035.

[48] E. L. Barber, R. Garg, C. Persenaire, and M. Simon, “Natural language processing with machine learning to predict outcomes after ovarian cancer surgery,” Gynecol. Oncol., vol. 160, no. 1, pp. 182–186, Jan. 2021, doi: 10.1016/j.ygyno.2020.10.004.

[49] A. Ala and A. Goli, “Incorporating machine learning and optimization techniques for assigning patients to operating rooms by considering fairness policies,” Eng. Appl. Artif. Intell., vol. 136, p. 108980, Oct. 2024, doi: 10.1016/j.engappai.2024.108980.

[50] C. Kavitha, V. Mani, S. R. Srividhya, O. I. Khalaf, and C. A. Tavera Romero, “Early-Stage Alzheimer’s Disease Prediction Using Machine Learning Models,” Front. Public Heal., vol. 10, p. 853294, Mar. 2022, doi: 10.3389/fpubh.2022.853294.

[51] S. Y. Kadum et al., “Machine learning-based telemedicine framework to prioritize remote patients with multi-chronic diseases for emergency healthcare services,” Netw. Model. Anal. Heal. Informatics Bioinforma., vol. 12, no. 1, p. 11, Jan. 2023, doi: 10.1007/s13721-022-00407-w.

[52] F. Tscherne, N. Wilke, B. Schachenhofer, K. Roux, and G. Tavlaridis, “The thermo lignum ecological insect pest eradication process: The effects on gilded and painted wooden objects,” Int. J. Conserv. Sci., vol. 7, no. SpecialIssue1, pp. 295–300, 2016, [Online]. Available at: https://www.jmlr.org/papers/volume14/demsar13a/demsar13a.pdf.

[53] T. Ho?evar and B. Zupan, “Conformal Prediction and its Integration within Visual Analytics Toolbox,” Proc. Mach. Learn. Res., vol. 152, no. 2008, pp. 286–293, 2021, [Online]. Available at: https://proceedings.mlr.press/v152/hocevar21a/hocevar21a.pdf.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571  (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
 andri.pranolo.id@ieee.org (publication issues)

View IJAIN Stats

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0