 (Computer Sciences Department, Badji Mokhtar University of Annaba, Annaba, Algeria)
 (Computer Sciences Department, Badji Mokhtar University of Annaba, Annaba, Algeria)(2) Mohammed Tarek Khadir
 (Computer Sciences Department, Badji Mokhtar University of Annaba, Annaba, Algeria)
 (Computer Sciences Department, Badji Mokhtar University of Annaba, Annaba, Algeria)(3) Andri Pranolo
 (Department of Informatics, Universitas Ahmad Dahlan, Yogyakarta, Indonesia)
 (Department of Informatics, Universitas Ahmad Dahlan, Yogyakarta, Indonesia)(4) Modawy Adam Ali Abdalla
 (Department of Electrical and Electronic Engineering, Nyala University, Nyala, Sudan)
 (Department of Electrical and Electronic Engineering, Nyala University, Nyala, Sudan)*corresponding author
| AbstractChest X-ray (CXR) classification tasks often suffer from severe class imbalance, resulting in biased predictions and suboptimal diagnostic performance. To address this challenge, we propose an integrated framework that combines high-fidelity data augmentation using Generative Adversarial Networks (GANs), ensemble learning via hard and soft voting, and multimodal feature fusion. The method begins by partitioning the majority class into multiple subsets, which are individually balanced through GAN-generated synthetic images. Deep learning models, specifically DenseNet201 and EfficientNetV2B3, are trained separately on each balanced subset. These models are then combined using ensemble voting to improve robustness. Additionally, features extracted from the most performant models are fused and used to train traditional classifiers such as Logistic Regression, Multilayer Perceptron, CatBoost, and XGBoost. Evaluations on a publicly available CXR dataset demonstrate consistent improvements across key metrics, including accuracy, precision, recall, F1-score, AUROC, AUPRC, MCC, and G-mean. This framework shows superior performance in multiclass scenarios. KeywordsClass Imbalanced; GAN-based Augmentation; Multimodal  Fusion; Multiclass CXR  Classification; Ensemble Learning. | 
| DOIhttps://doi.org/10.26555/ijain.v11i3.2092 | Article metricsAbstract views : 265 | PDF views : 51 | Cite | Full Text Download | 
References
[1] J. W. Pickering, “Machine learning for decision-making in cardiology: a narrative review to aid navigating the new landscape,” Rev. Española Cardiol. (English Ed., vol. 76, no. 8, pp. 645–654, Aug. 2023, doi: 10.1016/j.rec.2023.02.009.
[2] Deepak Kumar, Priyanka Pramod Pawar, Hari Gonaygunta, Geeta Sandeep Nadella, Karthik Meduri, and Shoumya Singh, “Machine learning’s role in personalized medicine & treatment optimization,” World J. Adv. Res. Rev., vol. 21, no. 2, pp. 1675–1686, Feb. 2024, doi: 10.30574/wjarr.2024.21.2.0641.
[3] C. Srinivas et al., “Deep Transfer Learning Approaches in Performance Analysis of Brain Tumor Classification Using MRI Images,” in Journal of Healthcare Engineering, Mar. 2022, vol. 2022, pp. 1–17, doi: 10.1155/2022/3264367.
[4] M. Altalhan, A. Algarni, and M. Turki-Hadj Alouane, “Imbalanced Data Problem in Machine Learning: A Review,” IEEE Access, vol. 13, pp. 13686–13699, 2025, doi: 10.1109/ACCESS.2025.3531662.
[5] M. Galanty et al., “Assessing the documentation of publicly available medical image and signal datasets and their impact on bias using the BEAMRAD tool,” Sci. Rep., vol. 14, no. 1, p. 31846, Dec. 2024, doi: 10.1038/s41598-024-83218-5.
[6] N. Sourlos et al., “Recommendations for the creation of benchmark datasets for reproducible artificial intelligence in radiology,” Insights Imaging, vol. 15, no. 1, p. 248, Oct. 2024, doi: 10.1186/s13244-024-01833-2.
[7] D. Ueda et al., “Fairness of artificial intelligence in healthcare: review and recommendations,” Jpn. J. Radiol., vol. 42, no. 1, pp. 3–15, Jan. 2024, doi: 10.1007/s11604-023-01474-3.
[8] J. Zhu, Z. Ye, M. Ren, and G. Ma, “Transformative skeletal motion analysis: optimization of exercise training and injury prevention through graph neural networks,” Front. Neurosci., vol. 18, p. 1353257, Mar. 2024, doi: 10.3389/fnins.2024.1353257.
[9] A. Makhlouf, M. Maayah, N. Abughanam, and C. Catal, “The use of generative adversarial networks in medical image augmentation,” Neural Comput. Appl., vol. 35, no. 34, pp. 24055–24068, Dec. 2023, doi: 10.1007/s00521-023-09100-z.
[10] T. Malygina, E. Ericheva, and I. Drokin, “Data Augmentation with GAN: Improving Chest X-Ray Pathologies Prediction on Class-Imbalanced Cases,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11832 LNCS, Springer, Cham, 2019, pp. 321–334, doi: 10.1007/978-3-030-37334-4_29.
[11] X. Qin, F. M. Bui, H. H. Nguyen, and Z. Han, “Learning From Limited and Imbalanced Medical Images With Finer Synthetic Images From GANs,” IEEE Access, vol. 10, pp. 91663–91677, 2022, doi: 10.1109/ACCESS.2022.3202560.
[12] S. Kothawade, A. Savarkar, V. Iyer, G. Ramakrishnan, and R. Iyer, “CLINICAL: Targeted Active Learning for Imbalanced Medical Image Classification,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 13559 LNCS, Springer, Cham, 2022, pp. 119–129, doi: 10.1007/978-3-031-16760-7_12.
[13] M. Yeung, E. Sala, C.-B. Schönlieb, and L. Rundo, “Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation,” Comput. Med. Imaging Graph., vol. 95, p. 102026, Jan. 2022, doi: 10.1016/j.compmedimag.2021.102026.
[14] R. Fan and S. Bu, “Transfer-Learning-Based Approach for the Diagnosis of Lung Diseases from Chest X-ray Images,” Entropy, vol. 24, no. 3, p. 313, Feb. 2022, doi: 10.3390/e24030313.
[15] E. Jangam, A. A. D. Barreto, and C. S. R. Annavarapu, “Automatic detection of COVID-19 from chest CT scan and chest X-Rays images using deep learning, transfer learning and stacking,” Appl. Intell., vol. 52, no. 2, pp. 2243–2259, Jan. 2022, doi: 10.1007/s10489-021-02393-4.
[16] S. Kaleem, A. Sohail, M. U. Tariq, M. Babar, and B. Qureshi, “Ensemble learning for multi-class COVID-19 detection from big data,” PLoS One, vol. 18, no. 10, p. e0292587, Oct. 2023, doi: 10.1371/journal.pone.0292587.
[17] N. Habib, M. M. Hasan, M. M. Reza, and M. M. Rahman, “Ensemble of CheXNet and VGG-19 Feature Extractor with Random Forest Classifier for Pediatric Pneumonia Detection,” SN Comput. Sci., vol. 1, no. 6, p. 359, Nov. 2020, doi: 10.1007/s42979-020-00373-y.
[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016, pp. 770–778, doi: 10.1109/CVPR.2016.90.
[19] I. Goodfellow et al., “Generative adversarial networks,” Commun. ACM, vol. 63, no. 11, pp. 139–144, Oct. 2020, doi: 10.1145/3422622.
[20] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Improved Training of Wasserstein GANs,” in Advances in Neural Information Processing Systems 30 (NIPS 2017), 2017, pp. 1–11, [Online]. Available at: https://proceedings.neurips.cc/paper_files/paper/2017/file.
[21] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional Networks,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017, vol. 2017-Janua, pp. 2261–2269, doi: 10.1109/CVPR.2017.243.
[22] M. Tan and Q. V. Le, “EfficientNetV2: Smaller Models and Faster Training,” in Proceedings of Machine Learning Research, 2021, vol. 139, pp. 10096–10106, [Online]. Available at: https://proceedings.mlr.press/v139/tan21a.html.
[23] T. Zhou, X. Ye, H. Lu, X. Zheng, S. Qiu, and Y. Liu, “Dense Convolutional Network and Its Application in Medical Image Analysis,” Biomed Res. Int., vol. 2022, no. 1, p. 2384830, Jan. 2022, doi: 10.1155/2022/2384830.
[24] T. Zhou, Q. Cheng, H. Lu, Q. Li, X. Zhang, and S. Qiu, “Deep learning methods for medical image fusion: A review,” Comput. Biol. Med., vol. 160, p. 106959, Jun. 2023, doi: 10.1016/j.compbiomed.2023.106959.
[25] Y. Liu, Y. Li, Z. Xu, X. Liu, H. Xie, and H. Zeng, “Guided Dropout: Improving Deep Networks Without Increased Computation,” Intell. Autom. Soft Comput., vol. 36, no. 3, pp. 2519–2528, Mar. 2023, doi: 10.32604/iasc.2023.033286.
[26] M. A. A. Abdalla et al., “Machine learning-based residential load demand forecasting: Evaluating ELM, XGBoost, RF, and SVM for enhanced energy system and sustainability,” Sci. Inf. Technol. Lett., vol. 6, no. 1, pp. 1–15, 2025. [Online]. Available at: https://pubs2.ascee.org/index.php/sitech/article/view/1866.
[27] M. Abdallah, B. Mohammadi, H. Nasiri, O. M. Katipoğlu, M. A. A. Abdalla, and M. M. Ebadzadeh, “Daily global solar radiation time series prediction using variational mode decomposition combined with multi-functional recurrent fuzzy neural network and quantile regression forests algorithm,” Energy Reports, vol. 10, pp. 4198–4217, Nov. 2023, doi: 10.1016/j.egyr.2023.10.070.
[28] M. A. A. Abdalla, W. Min, W. Bing, A. M. Ishag, and B. Saleh, “Double-layer home energy management strategy for increasing PV self-consumption and cost reduction through appliances scheduling, EV, and storage,” Energy Reports, vol. 10, pp. 3494–3518, Nov. 2023, doi: 10.1016/j.egyr.2023.10.019.
[29] I. Bakurov, M. Buzzelli, R. Schettini, M. Castelli, and L. Vanneschi, “Structural similarity index (SSIM) revisited: A data-driven approach,” Expert Syst. Appl., vol. 189, p. 116087, Mar. 2022, doi: 10.1016/j.eswa.2021.116087.
[30] N. B. Bynagari, “GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium,” Asian J. Appl. Sci. Eng., vol. 8, no. 1, pp. 25–34, Apr. 2019, doi: 10.18034/ajase.v8i1.9.
[31] X. Si, L. Wang, W. Xu, B. Wang, and W. Cheng, “Highly Imbalanced Classification of Gout Using Data Resampling and Ensemble Method,” Algorithms, vol. 17, no. 3, p. 122, Mar. 2024, doi: 10.3390/a17030122.
[32] M. Kim and K.-B. Hwang, “An empirical evaluation of sampling methods for the classification of imbalanced data,” PLoS One, vol. 17, no. 7, p. e0271260, Jul. 2022, doi: 10.1371/journal.pone.0271260.
[33] C. Mosquera, L. Ferrer, D. H. Milone, D. Luna, and E. Ferrante, “Class imbalance on medical image classification: towards better evaluation practices for discrimination and calibration performance,” Eur. Radiol., vol. 34, no. 12, pp. 7895–7903, Jun. 2024, doi: 10.1007/s00330-024-10834-0.
[34] J. T. Hancock, T. M. Khoshgoftaar, and J. M. Johnson, “Evaluating classifier performance with highly imbalanced Big Data,” J. Big Data, vol. 10, no. 1, p. 42, Apr. 2023, doi: 10.1186/s40537-023-00724-5.
[35] S. Ayoub, Y. Gulzar, J. Rustamov, A. Jabbari, F. A. Reegu, and S. Turaev, “Adversarial Approaches to Tackle Imbalanced Data in Machine Learning,” Sustainability, vol. 15, no. 9, p. 7097, Apr. 2023, doi: 10.3390/su15097097.
[36] K. Y. Win, N. Maneerat, S. Sreng, and K. Hamamoto, “Ensemble Deep Learning for the Detection of COVID-19 in Unbalanced Chest X-ray Dataset,” Appl. Sci., vol. 11, no. 22, p. 10528, Nov. 2021, doi: 10.3390/app112210528.
[37] D. K. Verma, G. Saxena, A. Paraye, A. Rajan, A. Rawat, and R. K. Verma, “Classifying COVID-19 and Viral Pneumonia Lung Infections through Deep Convolutional Neural Network Model using Chest X-Ray Images,” J. Med. Phys., vol. 47, no. 1, pp. 57–64, Jan. 2022, doi: 10.4103/jmp.jmp_100_21.
[38] E. Chamseddine, N. Mansouri, M. Soui, and M. Abed, “Handling class imbalance in COVID-19 chest X-ray images classification: Using SMOTE and weighted loss,” Appl. Soft Comput., vol. 129, p. 109588, Nov. 2022, doi: 10.1016/j.asoc.2022.109588.
[39] G. Mohan, M. M. Subashini, S. Balan, and S. Singh, “A multiclass deep learning algorithm for healthy lung, Covid-19 and pneumonia disease detection from chest X-ray images,” Discov. Artif. Intell., vol. 4, no. 1, p. 20, Mar. 2024, doi: 10.1007/s44163-024-00110-x.
[40] M. Nahiduzzaman et al., “Detection of various lung diseases including COVID-19 using extreme learning machine algorithm based on the features extracted from a lightweight CNN architecture,” Biocybern. Biomed. Eng., vol. 43, no. 3, pp. 528–550, Jul. 2023, doi: 10.1016/j.bbe.2023.06.003.
[41] Y. Wang et al., “Semantic-Powered Explainable Model-Free Few-Shot Learning Scheme of Diagnosing COVID-19 on Chest X-Ray,” IEEE J. Biomed. Heal. Informatics, vol. 26, no. 12, pp. 5870–5882, Dec. 2022, doi: 10.1109/JBHI.2022.3205167.
[42] A. Abbas, M. M. Abdelsamea, and M. M. Gaber, “Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network,” Appl. Intell., vol. 51, no. 2, pp. 854–864, Feb. 2021, doi: 10.1007/s10489-020-01829-7.
[43] S.-T. Hsieh and Y.-A. Cheng, “Multimodal feature fusion in deep learning for comprehensive dental condition classification,” J. X-Ray Sci. Technol. Clin. Appl. Diagnosis Ther., vol. 32, no. 2, pp. 303–321, Mar. 2024, doi: 10.3233/XST-230271.
[44] H. Jia and H. Lao, “Deep learning and multimodal feature fusion for the aided diagnosis of Alzheimer’s disease,” Neural Comput. Appl., vol. 34, no. 22, pp. 19585–19598, Nov. 2022, doi: 10.1007/s00521-022-07501-0.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
___________________________________________________________ 
  International Journal of Advances in Intelligent Informatics
International Journal of Advances in Intelligent Informatics 
ISSN 2442-6571  (print) | 2548-3161 (online)
 Organized by UAD and ASCEE Computer Society
 Published by Universitas Ahmad Dahlan 
 W: http://ijain.org 
 E: info@ijain.org (paper handling issues)
 andri.pranolo.id@ieee.org (publication issues)
 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
 
 
  
  
  
 























