(2) Zuraida Abal Abas
(3) Siti Azirah Asmai
(4) Muhamad Nabil Hidayat
*corresponding author
AbstractParticle swarm optimization (PSO), a technique in Artificial Intelligence, is one of the MPPT methods used to optimize the output of a Photovoltaic (PV) system. The PSO is well known for its convergence in Maximum Power Point Tracking (MPPT). However, no comprehensive study has been conducted on the performance of the PSO and incremental-conductance (INC) MPPT combination for the NTR 5E3E PV module. This study aims to provide a detailed performance analysis of the convergence of PSO and INC combination compared to PSO MPPT during maximum power (MP) tracking on NTR 5E3E PV module. This research work studies the relationships among PV parameters and other parameters affected during the implementation of PSO-INC MPPT. The study found that, in terms of efficient power and time consumption during the Maximum Power (MP) tracking process, the PSO-INC MPPT combination provides the highest average peak power at the shortest time compared to standalone PSO. The efficiency of PSO-INC Average Power is near 98.9% to 99.93%, compared to PSO MPPT, which is between 95.7% and 99.3%. The PSO and INC MPPT were tested on a boost converter without altering the specific electrical component characteristics to ensure accurate output during testing. Furthermore, a boost converter is sufficient to meet the overall requirements for the research work and simulation testing. The characteristics of the PSO and INC MPPT are observed using MATLAB/Simulink. This research assesses the robustness of the PSO-INC combination, advancing hybrid MPPT technology by demonstrating its performance.
KeywordsPSO; MPPT; PV; INC; MATLAB/SIMULINK
|
DOIhttps://doi.org/10.26555/ijain.v11i4.2143 |
Article metricsAbstract views : 383 | PDF views : 22 |
Cite |
Full Text Download
|
References
[1] C. Boubii et al., “Synergizing Wind and Solar Power: An Advanced Control System for Grid Stability,” Sustainability, vol. 16, no. 2, p. 815, Jan. 2024, doi: 10.3390/su16020815.
[2] M. Morey, N. Gupta, M. M. Garg, A. Kumar, and V. Gali, “Experimental investigation of ANFIS-PSO MPPT control with enriched voltage gain DC–DC converter for grid-tied PV applications,” Electr. Eng., vol. 107, no. 7, pp. 8331–8346, Jul. 2025, doi: 10.1007/s00202-023-02192-9.
[3] C. B. Nzoundja Fapi, H. Tchakounté, M. Ndje, P. Wira, and M. Kamta, “Extraction of the Global Maximum Power for PV System under PSC Using an Improved PSO Technique,” Period. Polytech. Electr. Eng. Comput. Sci., vol. 68, no. 1, pp. 64–73, Sep. 2023, doi: 10.3311/PPee.22254.
[4] Y. Mhanni and Y. Lagmich, “Adaptive metaheuristic strategies for optimal power point tracking in photovoltaic systems under fluctuating shading conditions,” EPJ Photovoltaics, vol. 15, p. 31, Sep. 2024, doi: 10.1051/epjpv/2024026.
[5] Aditya Sharma and Dheeraj Kumar Palwalia, “Synergistic Application of Particle Swarm Optimization and Gravitational Search Algorithm for Solar PV Performance Improvement,” Adv. Technol. Innov., vol. 9, no. 3, pp. 210–223, Jul. 2024, doi: 10.46604/aiti.2024.13689.
[6] D. Guessoum, M. Takruri, S. A. Badawi, M. Farhat, and I. ElBadawi, “Maximum power point tracking using unsupervised learning for photovoltaic power systems,” Int. J. Sustain. Eng., vol. 17, no. 1, pp. 397–412, Dec. 2024, doi: 10.1080/19397038.2024.2356834.
[7] F. Talha, K. Benmouiza, and M. Birane, “In-Depth Comparison of PV Array Configurations and Boost Converter Topologies Using P$&$O and PSO Techniques,” J. Eur. des Systèmes Autom., vol. 57, no. 3, pp. 681–687, Jun. 2024, doi: 10.18280/jesa.570305.
[8] M. Y. Dennai, H. Tedjini, and A. Nasri, “Comparative Assessment of P&O, PSO Sliding Mode, and PSO-ANFIS Controller MPPT for Microgrid Dynamics,” Elektron. ir Elektrotechnika, vol. 30, no. 3, pp. 54–61, Jun. 2024, doi: 10.5755/j02.eie.36335.
[9] T. Mariprasath, C. H. H. Basha, B. Khan, and A. Ali, “A novel on high voltage gain boost converter with cuckoo search optimization based MPPTController for solar PV system,” Sci. Rep., vol. 14, no. 1, p. 8545, Apr. 2024, doi: 10.1038/s41598-024-58820-2.
[10] M. Mishra, P. Mahajan, and R. Garg, “Implementation and comparison of metaheuristically modified ANN MPPT controllers under varying solar irradiance conditions,” Electr. Eng., vol. 106, no. 3, pp. 3427–3443, Jun. 2024, doi: 10.1007/s00202-023-02165-y.
[11] R. Dabou et al., “Development of autonomous monitoring and performance evaluation system of grid-tied photovoltaic station,” Int. J. Hydrogen Energy, vol. 46, no. 59, pp. 30267–30287, Aug. 2021, doi: 10.1016/j.ijhydene.2021.06.204.
[12] K. Burhanudin, N. A. Kamarzaman, A. A. A. Samat, A. I. Tajudin, S. S. Ramli, and N. Hidayat, “Implementing boost converter algorithm with PSO for photovoltaic system during partial shading condition,” in 2015 IEEE Conference on Energy Conversion (CENCON), Oct. 2015, pp. 394–397, doi: 10.1109/CENCON.2015.7409576.
[13] N. Ncir and N. El Akchioui, “An advanced intelligent MPPT control strategy based on the imperialist competitive algorithm and artificial neural networks,” Evol. Intell., vol. 17, no. 3, pp. 1437–1461, Jun. 2024, doi: 10.1007/S12065-023-00838-Y/.
[14] L. V and J. S. N M, “MPPT of solar PV systems using PSO memetic algorithm considering the effect of change in tilt angle,” Sci. Rep., vol. 15, no. 1, p. 7818, Mar. 2025, doi: 10.1038/s41598-025-92598-1.
[15] D. Li, X. Wang, J. Wang, and Z. Zhou, “Differential flat & PSO based photovoltaic maximum power point tracking control under partial shading condition,” Meas. Control, vol. 57, no. 2, pp. 103–112, Feb. 2024, doi: 10.1177/00202940231194108.
[16] M. V. Priya and G. A. Kumar, “Particle swarm optimization for enhanced maximum power point tracking: design and implementation in Proteus,” Int. J. Power Electron. Drive Syst., vol. 15, no. 1, p. 491, Mar. 2024, doi: 10.11591/ijpeds.v15.i1.pp491-497.
[17] L. Zaghba, A. Borni, M. Khennane, A. Fezzani, and A. Bouchakour, “An efficient, intelligent PSO-P&O-PI MPPT mechanism for Photovoltaic Systems under variable climatic conditions,” J. Renew. Energies, vol. 27, no. 1, pp. 15–33, Jun. 2024, doi: 10.54966/jreen.v27i1.1137.
[18] M. Morey, N. Gupta, M. M. Garg, and A. Kumar, “A comprehensive review of grid-connected solar photovoltaic system: Architecture, control, and ancillary services,” Renew. Energy Focus, vol. 45, pp. 307–330, Jun. 2023, doi: 10.1016/j.ref.2023.04.009.
[19] M. K. Kolamroudi, O. H. Jaiyeoba, M. Ilkan, and B. Safaei, “A comprehensive review on the artificial intelligence for the development of thermal concentrating photovoltaic systems,” Sol. Energy, vol. 301, p. 113937, Nov. 2025, doi: 10.1016/j.solener.2025.113937.
[20] S. N.B. and S. D, “A novel Beluga Whale Optimization for maximum power tracking in photovoltaic systems under shading and non-shading conditions,” Energy Reports, vol. 12, pp. 4352–4373, Dec. 2024, doi: 10.1016/j.egyr.2024.10.010.
[21] D. Shetty and J. N. Sabhahit, “Grey wolf optimization and incremental conductance based hybrid MPPT technique for solar powered induction motor driven water pump,” Int. J. Renew. Energy Dev., vol. 13, no. 1, pp. 52–61, Jan. 2024, doi: 10.14710/ijred.2024.57096.
[22] A. Satif, M. Mekhfioui, and R. Elgouri, “Advanced techniques for maximizing photovoltaic power: A systematic literature review,” Sci. African, vol. 30, p. e02989, Dec. 2025, doi: 10.1016/j.sciaf.2025.e02989.
[23] A. Z. Arsad, A. W. M. Zuhdi, A. D. Azhar, C. F. Chau, and A. Ghazali, “Advancements in maximum power point tracking for solar charge controllers,” Renew. Sustain. Energy Rev., vol. 210, p. 115208, Mar. 2025, doi: 10.1016/j.rser.2024.115208.
[24] H. A. Vahedi and F. R. Astaraei, “An unconventionally modified cat swarm algorithm for maximum power point tracking in solar power generation systems,” Energy Convers. Manag., vol. 344, p. 120263, Nov. 2025, doi: 10.1016/j.enconman.2025.120263.
[25] A. Azizi, M. Akhbari, S. Danyali, Z. Tohidinejad, and M. Shirkhani, “A review on topology and control strategies of high-power inverters in large- scale photovoltaic power plants,” Heliyon, vol. 11, no. 3, p. e42334, Feb. 2025, doi: 10.1016/j.heliyon.2025.e42334.
[26] K. J. Reddy et al., “A stochastic variance reduction gradient-based GSO-ANFIS optimized method for maximum power extraction of proton exchange membrane fuel cell,” Energy Convers. Manag. X, vol. 21, p. 100505, Jan. 2024, doi: 10.1016/j.ecmx.2023.100505.
[27] L. Guanghua, D. Jamro, A. Q. Rahimoon, D. A. Memon, Z. Bhatti, and S. H. H. Shah, “Comparative analysis of GWO MPPT with conventional techniques in shaded PV arrays,” Results Eng., vol. 27, p. 106881, Sep. 2025, doi: 10.1016/j.rineng.2025.106881.
[28] J. Zhang, G. Ren, Y. Xue, D. Xia, J. Wang, and Z. Hu, “Improvement of maximum power point tracking in photovoltaic arrays in different environments using hybrid algorithms,” Optoelectron. Lett., vol. 20, no. 1, pp. 28–34, Jan. 2024, doi: 10.1007/s11801-024-2171-0.
[29] P. K. Pathak, A. K. Yadav, and P. A. Alvi, “Reduced oscillations based perturb and observe solar maximum power point tracking scheme to enhance efficacy and speed of a photovoltaic system,” J. Eng. Res., vol. 11, no. 2B, pp. 112–125, Feb. 2022, doi: 10.36909/jer.13569.
[30] P. Trojovský and M. Dehghani, “Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications,” Sensors, vol. 22, no. 3, p. 855, Jan. 2022, doi: 10.3390/s22030855.
[31] K. Shejul and R. Harikrishnan, “Energy consumption optimization of chiller plants with the genetic algorithm based GWO and JAYA algorithm in the dynamic pricing demand response,” Results Eng., vol. 22, p. 102193, Jun. 2024, doi: 10.1016/j.rineng.2024.102193.
[32] J. Abdulhasan Salim, B. M. Albaker, M. Shyaa Alwan, and M. Hasanuzzaman, “Hybrid MPPT approach using Cuckoo Search and Grey Wolf Optimizer for PV systems under variant operating conditions,” Glob. Energy Interconnect., vol. 5, no. 6, pp. 627–644, Dec. 2022, doi: 10.1016/j.gloei.2022.12.005.
[33] T. M. Shami, A. A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M. A. Summakieh, and S. Mirjalili, “Particle Swarm Optimization: A Comprehensive Survey,” IEEE Access, vol. 10, pp. 10031–10061, 2022, doi: 10.1109/ACCESS.2022.3142859.
[34] R. Sepehrzad, A. R. Moridi, M. E. Hassanzadeh, and A. R. Seifi, “Intelligent Energy Management and Multi-Objective Power Distribution Control in Hybrid Micro-grids based on the Advanced Fuzzy-PSO Method,” ISA Trans., vol. 112, pp. 199–213, Jun. 2021, doi: 10.1016/j.isatra.2020.12.027.
[35] A. S. Saidi, C. Ben Salah, A. Errachdi, M. F. Azeem, J. K. Bhutto, and V. P. Thafasal Ijyas, “A novel approach in stand-alone photovoltaic system using MPPT controllers & NNE,” Ain Shams Eng. J., vol. 12, no. 2, pp. 1973–1984, Jun. 2021, doi: 10.1016/j.asej.2021.01.006.
[36] K. Sonam Soma, B. R., and K. N., “Performance improvement of PV systems during dynamic partial shading conditions using optimization algorithms,” Trans. Energy Syst. Eng. Appl., vol. 5, no. 1, pp. 1–21, May 2024, doi: 10.32397/tesea.vol5.n1.557.
[37] Wang Yunliang and Bian Nan, “Research of MPPT control method based on PSO algorithm,” in 2015 4th International Conference on Computer Science and Network Technology (ICCSNT), Dec. 2015, pp. 698–701, doi: 10.1109/ICCSNT.2015.7490840.
[38] I. U. V. Simanjuntak, J. Haidi, R. F. A. Putra, and L. M. Silalahi, “Comparison of MPPT optimization methods for PO and PSO solar panels to overcome partial shading,” Int. J. Electron. Telecommun., vol. 70, no. 4, pp. 1023–1029, Nov. 2024, doi: 10.24425/ijet.2024.152090.
[39] M. Bentata and S. Doudou, “Dual-stage PV pumping system based on ANFTSMC and PI control enhanced by APSO optimization,” Electr. Eng., vol. 107, no. 6, pp. 7041–7061, Jun. 2025, doi: 10.1007/s00202-024-02916-5.
[40] G.-R. Yu, Y.-D. Chang, and W.-S. Lee, “Maximum Power Point Tracking of Photovoltaic Generation System Using Improved Quantum-Behavior Particle Swarm Optimization,” Biomimetics, vol. 9, no. 4, p. 223, Apr. 2024, doi: 10.3390/biomimetics9040223.
[41] A. Abbas, M. Farhan, M. Shahzad, R. Liaqat, and U. Ijaz, “Power Tracking and Performance Analysis of Hybrid Perturb–Observe, Particle Swarm Optimization, and Fuzzy Logic-Based Improved MPPT Control for Standalone PV System,” Technologies, vol. 13, no. 3, p. 112, Mar. 2025, doi: 10.3390/technologies13030112.
[42] Arunprasath Thanabalan, Chanuri Charin, Baharuddin Ismail, Fatin Nadia Azman Fauzi, and Azirah Baharum, “Performance Analysis of Deterministic Particle Swarm Optimization MPPT for a Standalone Photovoltaic System,” J. Adv. Res. Appl. Sci. Eng. Technol., vol. 49, no. 1, pp. 108–116, Jul. 2024, doi: 10.37934/araset.49.1.108116.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571 (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
andri.pranolo.id@ieee.org (publication issues)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

























Download