
(2) Oyas Wahyunggoro

(3) Hendri Himawan Triharminto

*corresponding author
AbstractGenetic algorithm (GA) is well-known algorithm to find a feasible path planning which can be defined as global optimum problem. The drawback of GA is the high computation due to random process on each operator. In this research, the new initial population integrating with new crossover operator strategy was proposed. The parameter is the length of distance travelled of the robot. Before employing the crossover operator, generating a c-obstacle have been done. The c-obstacle is used as a filter to reduce unnecessary nodes to decrease time computation. After that, the initial population has been determined. The initial population is divided into two parents which parent’s chromosome contains an initial and goal position. The second parents are fulfilled with nodes from each obstacle. The genes of chromosome will add with c-obstacle nodes. Crossover operator is applied after filtering and c-obstacle of possible hopping is determined. Filtering method is used to remove unnecessary nodes that are part of c-obstacle. Fitness function considers the distance from the last to next position. Optimum value is the shortest distance of path planning which avoids the obstacle in front. The aim of the proposed method is to reduce the random population and random operating in GA. By using a similar data set of previous researches, the modified GA can reduce the total of generation and yield an adaptive generation number. This means that the modified GA converges faster than the other GA methods.
KeywordsPath planning; Genetic algorithm; Initial population; C-Obstacle; Crossover operator
|
DOIhttps://doi.org/10.26555/ijain.v10i3.699 |
Article metricsAbstract views : 285 | PDF views : 68 |
Cite |
Full Text![]() |
References
[1] M. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi, and Z. Issaabadi, “An Introduction to Nanotechnology,” in Interface Science and Technology, vol. 28, Elsevier, 2019, pp. 1–27, doi: 10.1016/B978-0-12-813586-0.00001-8.
[2] X. Wang, H. Zhang, S. Liu, J. Wang, Y. Wang, and D. Shangguan, “Path planning of scenic spots based on improved A* algorithm,” Sci. Rep., vol. 12, no. 1, p. 1320, Jan. 2022, doi: 10.1038/s41598-022-05386-6.
[3] D. Li, L. Wang, S. Geng, and B. Jiang, “Path Planning of AS/RS Based on Cost Matrix and Improved Greedy Algorithm,” Symmetry (Basel)., vol. 13, no. 8, p. 1483, Aug. 2021, doi: 10.3390/sym13081483.
[4] S. Kadry, G. Alferov, and V. Fedorov, “D-Star Algorithm Modification,” Int. J. Online Biomed. Eng., vol. 16, no. 08, pp. 108–113, Jul. 2020, doi: 10.3991/ijoe.v16i08.14243.
[5] A. Tuncer and M. Yildirim, “Dynamic path planning of mobile robots with improved genetic algorithm,” Comput. Electr. Eng., vol. 38, no. 6, pp. 1564–1572, Nov. 2012, doi: 10.1016/j.compeleceng.2012.06.016.
[6] B. K. Patle, G. Babu L, A. Pandey, D. R. K. Parhi, and A. Jagadeesh, “A review: On path planning strategies for navigation of mobile robot,” Def. Technol., vol. 15, no. 4, pp. 582–606, Aug. 2019, doi: 10.1016/j.dt.2019.04.011.
[7] S. M. H. Rostami, A. K. Sangaiah, J. Wang, and X. Liu, “Obstacle avoidance of mobile robots using modified artificial potential field algorithm,” EURASIP J. Wirel. Commun. Netw., vol. 2019, no. 1, p. 70, Dec. 2019, doi: 10.1186/s13638-019-1396-2.
[8] U. Orozco-Rosas, O. Montiel, and R. Sepúlveda, “Mobile robot path planning using membrane evolutionary artificial potential field,” Appl. Soft Comput., vol. 77, pp. 236–251, Apr. 2019, doi: 10.1016/j.asoc.2019.01.036.
[9] X. Fan, Y. Guo, H. Liu, B. Wei, and W. Lyu, “Improved Artificial Potential Field Method Applied for AUV Path Planning,” Math. Probl. Eng., vol. 2020, no. 1, pp. 1–21, Apr. 2020, doi: 10.1155/2020/6523158.
[10] M. D. Phung and Q. P. Ha, “Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization,” Appl. Soft Comput., vol. 107, p. 107376, Aug. 2021, doi: 10.1016/j.asoc.2021.107376.
[11] R. Wang, K. Hao, L. Chen, T. Wang, and C. Jiang, “A novel hybrid particle swarm optimization using adaptive strategy,” Inf. Sci. (Ny)., vol. 579, pp. 231–250, Nov. 2021, doi: 10.1016/j.ins.2021.07.093.
[12] C. Miao, G. Chen, C. Yan, and Y. Wu, “Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm,” Comput. Ind. Eng., vol. 156, p. 107230, Jun. 2021, doi: 10.1016/j.cie.2021.107230.
[13] Q. Luo, H. Wang, Y. Zheng, and J. He, “Research on path planning of mobile robot based on improved ant colony algorithm,” Neural Comput. Appl., vol. 32, no. 6, pp. 1555–1566, Mar. 2020, doi: 10.1007/s00521-019-04172-2.
[14] Q. Song, Q. Zhao, S. Wang, Q. Liu, and X. Chen, “Dynamic Path Planning for Unmanned Vehicles Based on Fuzzy Logic and Improved Ant Colony Optimization,” IEEE Access, vol. 8, pp. 62107–62115, 2020, doi: 10.1109/ACCESS.2020.2984695.
[15] X. Zhou, H. Ma, J. Gu, H. Chen, and W. Deng, “Parameter adaptation-based ant colony optimization with dynamic hybrid mechanism,” Eng. Appl. Artif. Intell., vol. 114, p. 105139, Sep. 2022, doi: 10.1016/j.engappai.2022.105139.
[16] M. S. A. D. Ali, N. R. Babu, and K. Varghese, “Collision Free Path Planning of Cooperative Crane Manipulators Using Genetic Algorithm,” J. Comput. Civ. Eng., vol. 19, no. 2, pp. 182–193, Apr. 2005, doi: 10.1061/(ASCE)0887-3801(2005)19:2(182).
[17] A. H. Pratomo, N. H. Cahyana, and S. N. Indrawati, “Optimizing CNN hyperparameters with genetic algorithms for face mask usage classification,” Sci. Inf. Technol. Lett., vol. 4, no. 1, pp. 54–64, May 2023, doi: 10.31763/sitech.v4i1.1182.
[18] A. A. Zarir, S. Bashar, and A. R. Ismail, “Automated image captioning with deep neural networks,” Sci. Inf. Technol. Lett., vol. 1, no. 1, pp. 17–23, Apr. 2020, doi: 10.31763/sitech.v1i1.31.
[19] Mingwu Chen and A. M. S. Zalzala, “Safety considerations in the optimisation of paths for mobile robots using genetic algorithms,” in 1st International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications (GALESIA), 1995, vol. 1995, no. 414, pp. 299–306, doi: 10.1049/cp:19951066.
[20] X. Zhang and X. Chen, “Solving ‘Limited’ Task Allocation Problem for UAVs Based on Optimization Algorithms,” Wirel. Commun. Mob. Comput., vol. 2021, no. 1, p. 5530454, Jan. 2021, doi: 10.1155/2021/5530454.
[21] M. M. Riyahi, A. E. Bakhshipour, and A. Haghighi, “Probabilistic warm solutions-based multi-objective optimization algorithm, application in optimal design of water distribution networks,” Sustain. Cities Soc., vol. 91, p. 104424, Apr. 2023, doi: 10.1016/j.scs.2023.104424.
[22] P. Gia Luan and N. T. Thinh, “Real-Time Hybrid Navigation System-Based Path Planning and Obstacle Avoidance for Mobile Robots,” Appl. Sci., vol. 10, no. 10, p. 3355, May 2020, doi: 10.3390/app10103355.
[23] P. G. Luan and N. T. Thinh, “Hybrid genetic algorithm based smooth global-path planning for a mobile robot,” Mech. Based Des. Struct. Mach., vol. 51, no. 3, pp. 1758–1774, Mar. 2023, doi: 10.1080/15397734.2021.1876569.
[24] A. K. Rath, D. R. Parhi, H. C. Das, P. B. Kumar, M. K. Muni, and K. Salony, “Path optimization for navigation of a humanoid robot using hybridized fuzzy-genetic algorithm,” Int. J. Intell. Unmanned Syst., vol. 7, no. 3, pp. 112–119, Jul. 2019, doi: 10.1108/IJIUS-11-2018-0032.
[25] A. Vi, A. M. Kleinnijenhuis, and J. Doyne, “Qualities, challenges and future of genetic algorithms: a literature review,” arXiv, pp. 1–48, 2021, [Online]. Available at: https://arxiv.org/abs/2011.05277.
[26] Z. Guo and L. Mo, “Robot path planning based on improved genetic algorithm,” Front. Comput. Intell. Syst., vol. 2, no. 3, pp. 78–81, Feb. 2023, doi: 10.54097/fcis.v2i3.5314.
[27] M. Nazarahari, E. Khanmirza, and S. Doostie, “Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm,” Expert Syst. Appl., vol. 115, pp. 106–120, Jan. 2019, doi: 10.1016/j.eswa.2018.08.008.
[28] P. Jiang, Y. Cheng, J. Yi, and J. Liu, “An efficient constrained global optimization algorithm with a clustering-assisted multiobjective infill criterion using Gaussian process regression for expensive problems,” Inf. Sci. (Ny)., vol. 569, pp. 728–745, Aug. 2021, doi: 10.1016/j.ins.2021.05.015.
[29] D. Whitley, “A genetic algorithm tutorial,” Stat. Comput., vol. 4, no. 2, pp. 65–85, Jun. 1994, doi: 10.1007/BF00175354.
[30] Z. Yao and L. Ma, “A Static Environment-Based Path Planning Method by Using Genetic Algorithm,” in 2010 International Conference on Computing, Control and Industrial Engineering, 2010, vol. 2, pp. 405–407, doi: 10.1109/CCIE.2010.220.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571 (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
andri.pranolo.id@ieee.org (publication issues)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0