K-Means cluster analysis in earthquake epicenter clustering

(1) * Pepi Novianti Mail (Department of Statistics, Faculty of Mathematics and Natural Science, University of Bengkulu, Indonesia, Indonesia)
(2) Dyah Setyorini Mail (Department of Statistics, Faculty of Mathematics and Natural Science, University of Bengkulu, Indonesia, Indonesia)
(3) Ulfasari Rafflesia Mail (Department of Mathematics, Faculty of Mathematics and Natural Science, University of Bengkulu, Indonesia)
*corresponding author

Abstract


Bengkulu Province, Indonesia, which lies in two active faults, Semangko fault and Mentawai fault, is an area that has high seismic activity. As earthquake-prone area, the characteristic of each earthquake in Bengkulu Province needs to be studied. This paper presents the earthquake epicenter clustering in Bengkulu Province. Tectonic earthquake data at Bengkulu Province and surrounding areas from January 1970 to December 2015 are used. The data is taken from single-station Agency Meteorology, Climatology and Geophysics (BMKG) Kepahiang Bengkulu. K-Means clustering using Euclidean distance method is used in this analysis. The variables are latitude, longitude and magnitude. The optimum number of cluster is determined using Krzanowski and Lai (KL) index which is 7. The analysis for each clustering experiment with variation number of cluster is presented.

Keywords


Cluster Analysis; K-Means; KL Index; Seismic Activity; Earthquake; Bengkulu Province; Indonesia

   

DOI

https://doi.org/10.26555/ijain.v3i2.100
      

Article metrics

Abstract views : 3596 | PDF views : 720

   

Cite

   

Full Text

Download

References


D.H. Natawidjaja. “The Sumatran Fault Zone – From Source to Hazardâ€. Journal of Earthquake and Tsunami, Vol. 1, No.1, pp 21-47. 2007.

P. Nuannin, O. Kulhánek, and L. Persson. “Variations of b-values preceding large earthquakes in the Andaman-Sumatra Subduction Zoneâ€. Journal of Asian Earth Sciences, Vol. 61, pp 237–242. 2012.

M. Affan, M. Syukri, L. Wahyuna, and S. Hizir. “Spatial Statistic Analysis of Earthquakes in Aceh Province Year 1921-2014: Cluster Seismicityâ€. Aceh International Journal of Science and Technology, Vol.2, 54-62, 2016.

E. Irwansyah and E. Winarko. “Spatial Data Clustering and Zonation of Earthquake Building Damage Hazard Areaâ€. EPJ Web of Conferences, Vol. 68, No. 5, pp 1-6, 2014.

I.A. Musdar and Azhari. “RCE-Kmeans method for Data Clusteringâ€. International Journal of Advances in Intelligent Informatics,Vol 1, No 2, pp. 107-114, 2015.

A. Zamani and N. Hashemi. “Computer-Based Self-Organized Tectonic Zoning: a Tentative Pattern Recognition for Iranâ€. Computers and Geosciences Journal, Vol. 30, pp 705-718. 2004.

A. Ansari, A. Noorzad, and H. Zafarani. â€Clustering analysis of the seismic catalog of Iranâ€. Computers & Geosciences Journal. Vol. 35. pp. 475-486. 2009.

G. Weatherill and P.W. Burton. “Delineation of Shallow Seismic Source Zones Using k-means Cluster Analysis. with Application to the Aegean Regionâ€. Geophysical Journal International, Vol. 176, pp 565-588. 2009.

K. Rehman, P.W. Burton, and G.A. Weatherill. “K-Means Cluster Analysis and Seismicity Partitioning for Pakistanâ€. Journal of Seismology, Vol.18, pp. 401-419, 2014.

B. Everitt and T. Hothorn. An Introduction to Applied Multivariate Analysis with R. New York: Springer, 2011, pp 163-200.

R.A. Johnson and D.W. Wichern. Applied Multivariate Statistical Analysis. USA: Pearson Education. Inc, 2007, pp 696-702.

A. Likas, N. Vlassis, and J.J. Verbeck. “The global k-means clustering algorithmâ€. Pattern Recognition. Vol. 36, pp 451-461, 2003.

W.J. Krzanowski, and Y.T. Lai. “A criterion for determining the number of groups in a data set using sum of squares clusteringâ€. Biometrics, Vol. 44, pp 23-34, 1988.