Computation of spatial error model with matrix exponential spatial specification approach

(1) Marsono Marsono Mail (BPS-Statistics of Sulawesi Barat Province, Indonesia)
(2) * Setiawan Setiawan Mail (Institut Teknologi Sepuluh Nopember, Indonesia)
(3) Heri Kuswanto Mail (Institut Teknologi Sepuluh Nopember, Indonesia)
*corresponding author

Abstract


In spatial regression analysis, we not only consider the internal factors of a location, but also take into account the spatial factors that may affect the relationship. The model of spatial dependence between regions caused by unknown factors or errors is known as the Spatial Error Model (SEM). In its application to large datasets, SEM suffers from several problems in parameter estimation and computational time. One of the methods to solve this problem is to use Matrix Exponential Spatial Specification (MESS). The purpose of this research is to find another alternative to modeling data containing spatial autocorrelation errors as a substitute for SEM. MESS(0,1) is named as an alternative model to SEM. With the advantage of MESS features, the MESS(0,1) model is expected to be faster in analytics and computation compared to SEM when using Maximum Likelihood Estimation (MLE). The purpose of this study was to evaluate the effectiveness of the MESS (0,1) model as an alternative to SEM using MLE based on simulation studies and real data analysis. Simulation studies were conducted by generating data from small samples to large samples and then estimating parameters with the MESS(0,1) and SEM models. Then we compared the performance of the two models with the time used during estimation and the root mean square error (RMSE). In addition, it is applied to real data, namely Gross Regional Domestic Product (GRDP) data. The real data used is the GRDP of the construction category on Java Island in 2021. This is in line with the massive infrastructure development as a government program. The independent variables used and considered influential on the GRDP of the construction sector are domestic investment, foreign investment, labor, and wages. Based on the simulation study results, the computation time for estimating the parameters of MESS(0,1) is faster than the SEM model. In addition, in terms of accuracy, the RMSE indicator shows MESS(0,1) is more accurate than the SEM. In addition, the MESS(0,1) and SEM models were applied to the real data. The modeling real data results show that all variables have a significant positive effect on GRDP in the construction category.

Keywords


Spatial Error Model;MESS(0,1);Maximum Likelihood Estimation;Gross Regional Domestic Product

   

DOI

https://doi.org/10.26555/ijain.v10i3.1506
      

Article metrics

Abstract views : 844 | PDF views : 122

   

Cite

   

Full Text

Download

References


[1] I. Sabek and M. F. Mokbel, “Machine Learning Meets Big Spatial Data,†in 2020 IEEE 36th International Conference on Data Engineering (ICDE), Apr. 2020, vol. 2020-April, pp. 1782–1785, doi: 10.1109/ICDE48307.2020.00169.

[2] S. J. Rey and R. S. Franklin, Handbook of Spatial Analysis in the Social Sciences. Edward Elgar Publishing, pp. 1-588, 2022, doi: 10.4337/9781789903942.

[3] M. Koley and A. K. Bera, “Testing for spatial dependence in a spatial autoregressive (SAR) model in the presence of endogenous regressors,†J. Spat. Econom., vol. 3, no. 1, p. 11, Dec. 2022, doi: 10.1007/s43071-022-00026-7.

[4] R. Chakir and J. Le Gallo, “Spatial Autocorrelation in Econometric Land Use Models: An Overview,†in Advances in Contemporary Statistics and Econometrics, Cham: Springer International Publishing, 2021, pp. 339–362, doi: 10.1007/978-3-030-73249-3_18.

[5] L. Anselin, Spatial Econometrics: Methods and Models, vol. 4. Dordrecht: Springer Netherlands, p. 284, 1988, doi: 10.1007/978-94-015-7799-1.

[6] T. Rüttenauer, “Spatial Regression Models: A Systematic Comparison of Different Model Specifications Using Monte Carlo Experiments,†Sociol. Methods Res., vol. 51, no. 2, pp. 728–759, May 2022, doi: 10.1177/0049124119882467.

[7] R. Franzese and L. Curini, The SAGE Handbook of Research Methods in Political Science and International Relations. SAGE Publications Ltd, pp. 1-1332, 2020. [Online]. Available at: https://www.torrossa.com/en/resources/an/5018785#page=775.

[8] R. De Siano, V. Leone Sciabolazza, and A. Sapio, “Spatial Econometric Models: Theory,†in SpringerBriefs in Regional Science, Springer, Cham, 2020, pp. 31–43, doi: 10.1007/978-3-030-54588-8_3.

[9] Y. Yamagata and H. Seya, Spatial Analysis Using Big Data : Econometrical Methods and Applications. Elsevier Academic Press, p. 316, 2019. [Online]. Available at: http://www.sciencedirect.com:5070/book/9780128131275/spatial-analysis-using-big-data?via=ihub=.

[10] J. P. Elhorst, Spatial Econometrics. Berlin, Heidelberg: Springer Berlin Heidelberg, p. 119, 2014. [Online]. Available at: https://link.springer.com/10.1007/978-3-642-40340-8.

[11] L.-F. Lee, “Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models,†Econometrica, vol. 72, no. 6, pp. 1899–1925, Nov. 2004, doi: 10.1111/j.1468-0262.2004.00558.x.

[12] Marsono, Setiawan, and H. Kuswanto, “Fast Maximum Likelihood Estimation Of Big Data Spatial Autoregressive Model: Matrix Exponential Spatial Specification Approach,†in 2023 International Conference on Computer, Control, Informatics and its Applications (IC3INA), Oct. 2023, pp. 376–381, doi: 10.1109/IC3INA60834.2023.10285776.

[13] Y. Yang, O. Doğan, and S. Taşpınar, “Fast estimation of matrix exponential spatial models,†J. Spat. Econom., vol. 2, no. 1, p. 9, Dec. 2021, doi: 10.1007/s43071-021-00015-2.

[14] J. P. Elhorst, “Spatial Panel Data Models,†in Handbook of Applied Spatial Analysis, Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 377–407, doi: 10.1007/978-3-642-03647-7_19.

[15] O. Doğan, Y. Yang, and S. Taşpınar, “Information criteria for matrix exponential spatial specifications,†Spat. Stat., vol. 57, p. 100776, Oct. 2023, doi: 10.1016/j.spasta.2023.100776.

[16] Y. Yang, O. Doğan, and S. T. Inar, “Estimation of Matrix Exponential Unbalanced Panel Data Models with Fixed Effects: An Application to US Outward FDI Stock,†J. Bus. Econ. Stat., vol. 42, no. 2, pp. 469–484, Apr. 2024, doi: 10.1080/07350015.2023.2200486.

[17] N. Debarsy, F. Jin, and L. Lee, “Large sample properties of the matrix exponential spatial specification with an application to FDI,†J. Econom., vol. 188, no. 1, pp. 1–21, Sep. 2015, doi: 10.1016/j.jeconom.2015.02.046.

[18] J. LeSage and R. K. Pace, Introduction to Spatial Econometrics. Chapman and Hall/CRC, p. 340, 2009, doi: 10.1201/9781420064254.

[19] B. P. Statistik, “Gross Regional Domestic Product of Regency/City in Indonesia 2017-2021,†p. 202, 2022. [Online]. Available at: https://www.bps.go.id/id/publication/2022/06/07/59cf6a8a96b61d09c6d65260.

[20] B. P. Statistik, “Gross Regional Domestic Product of Provinces in Indonesia by Industry 2017-2021 - Central Bureau of Statistics of Indonesia,†p. 200, 2022. [Online]. Available at: https://www.bps.go.id/id/publication/2022/04/05/aeec064ce0205363edd1d58c/produk-domestik-regional-bruto-provinsi-provinsi-di-indonesia-menurut-lapangan-usaha-2017-2021.html.

[21] B. P. S. Indonesia, “Analysis of Labor Mobility Results from Sakernas 2022,†p. 242, 2023. [Online]. Available at: https://www.bps.go.id/id/publication/2023/10/27/83d4aaefa732e79efa75107b/analisis-mobilitas-tenaga-kerja-hasil-sakernas-2022.html.

[22] Y. Lee, A. M. B. Azlan, and W. Lim, “Dataset on macroeconomic indicators and fiscal decentralisation indices’ variables in Central Java Province, Indonesia,†Data Br., vol. 50, p. 109554, Oct. 2023, doi: 10.1016/j.dib.2023.109554.

[23] R. N. Wilantari, S. Latifah, W. Wibowo, and H. Al Azies, “Additive mixed modeling of impact of investment, labor, education and information technology on regional income disparity: An empirical analysis using the statistics Indonesia dataset,†Data Br., vol. 45, p. 108619, Dec. 2022, doi: 10.1016/j.dib.2022.108619.

[24] H. Saleh, B. Surya, D. N. Annisa Ahmad, and D. Manda, “The Role of Natural and Human Resources on Economic Growth and Regional Development: With Discussion of Open Innovation Dynamics,†J. Open Innov. Technol. Mark. Complex., vol. 6, no. 4, p. 103, Dec. 2020, doi: 10.3390/joitmc6040103.

[25] A. F. Aritenang, “The crucial role of motorcycle-based ride-hailing among commuters: The case of Jakarta and Bandung metropolitan areas,†J. Public Transp., vol. 26, p. 100082, Jan. 2024, doi: 10.1016/j.jpubtr.2024.100082.

[26] R. T. Siregar, H. P. Silitonga, K. Lubis, and A. Sudirman, “The Impact of GRDP and RWP on Regional Minimum Wage,†JEJAK, vol. 13, no. 2, pp. 292–306, Oct. 2020, doi: 10.15294/jejak.v13i2.23398.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571  (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
 andri.pranolo.id@ieee.org (publication issues)

View IJAIN Stats

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0