An enhanced pivot-based neural machine translation for low-resource languages

(1) Danang Arbian Sulistyo Mail (Universitas Negeri Malang, Indonesia)
(2) * Aji Prasetya Wibawa Mail (Universitas Negeri Malang, Indonesia)
(3) Didik Dwi Prasetya Mail (Universitas Negeri Malang, Indonesia)
(4) Fadhli Almuíini Ahda Mail (Universitas Negeri Malang, Indonesia)
*corresponding author

Abstract


This study examines the efficacy of employing Indonesian as an intermediary language to improve the quality of translations from Javanese to Madurese through a pivot-based approach utilizing neural machine translation (NMT). The principal objective of this research is to enhance translation precision and uniformity among these low-resource languages, hence advancing machine translation models for underrepresented languages. The data collecting approach entailed extracting parallel texts from internet sources, followed by pre-processing through tokenization, normalization, and stop-word elimination algorithms. The prepared datasets were utilized to train and assess the NMT models. An intermediary phase utilizing Indonesian is implemented in the translation process to enhance the accuracy and consistency of translations between Javanese and Madurese. Parallel text corpora were created by collecting and preprocessing data, thereafter, utilized to train and assess the NMT models. The pivot-based strategy regularly surpassed direct translation regarding BLEU scores for all n-grams (BLEU-1 to BLEU-4). The enhanced BLEU ratings signify increased precision in vocabulary selection, preservation of context, and overall comprehensibility. This study significantly enhances the current literature in machine translation and computational linguistics, especially for low-resource languages, by illustrating the practical effectiveness of a pivot-based method for augmenting translation precision. The method's dependability and efficacy in producing genuine translations were proved through numerous studies. The pivot-based technique enhances translation quality, although it possesses limitations, including the risk of error propagation and bias originating from the pivot language. Further research is necessary to examine the integration of named entity recognition (NER) to improve accuracy and optimize the intermediate translation process. This project advances the domains of machine translation and the preservation of low-resource languages, with practical implications for multilingual communities, language education resources, and cultural conservation.

Keywords


Neural machine translation; Pivot based NMT; Low-resource language; Translation

   

DOI

https://doi.org/10.26555/ijain.v11i2.2115
      

Article metrics

Abstract views : 676 | PDF views : 41

   

Cite

   

Full Text

Download

References


[1] B. Klimova, M. Pikhart, A. D. Benites, C. Lehr, and C. Sanchez-Stockhammer, “Neural machine translation in foreign language teaching and learning: a systematic review,” Educ. Inf. Technol., vol. 28, no. 1, pp. 663–682, Jan. 2023, doi: 10.1007/s10639-022-11194-2.

[2] R. Haque, C.-H. Liu, and A. Way, “Recent advances of low-resource neural machine translation,” Mach. Transl., vol. 35, no. 4, pp. 451–474, Dec. 2021, doi: 10.1007/s10590-021-09281-1.

[3] A. Ghafoor et al., “The Impact of Translating Resource-Rich Datasets to Low-Resource Languages Through Multi-Lingual Text Processing,” IEEE Access, vol. 9, pp. 124478–124490, 2021, doi: 10.1109/ACCESS.2021.3110285.

[4] J. Zhang et al., “Neural Machine Translation for Low-Resource Languages from a Chinese-centric Perspective: A Survey,” ACM Trans. Asian Low-Resource Lang. Inf. Process., vol. 23, no. 6, pp. 1–60, Jun. 2024, doi: 10.1145/3665244.

[5] N. Arivazhagan et al., “Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges,” arxiv Artif. Intell., pp. 1–27, Jul. 2019. [Online]. Available at: https://arxiv.org/pdf/1907.05019.

[6] E. L. Zen, “Javanese Language As An Ethnic Identity Marker Among Multilingual Families In Indonesia,” Linguist. Indones., vol. 39, no. 1, pp. 49–62, Mar. 2021, doi: 10.26499/li.v39i1.195.

[7] J. Vander Klok, “The Javanese language at risk? Perspectives from an East Java village,” University of Hawaii Press, pp. 300-345 , 2019. [Online]. Available at: http://hdl.handle.net/10125/24868.

[8] D. A. Sulistyo, “LSTM-Based Machine Translation for Madurese-Indonesian,” J. Appl. Data Sci., vol. 4, no. 3, pp. 189–199, Sep. 2023, doi: 10.47738/jads.v4i3.113.

[9] R. T. Aditiawan and S. Suhardi, “Language Acculturation of Javanese and Madurese Communities: Slang Variations of Pendalungan Teenagers in Jember Regency,” Int. J. Multicult. Multireligious Underst., vol. 11, no. 3, p. 278, Mar. 2024, doi: 10.18415/ijmmu.v11i3.5573.

[10] S. L. Chelliah, Why Language Documentation Matters. Cham: Springer International Publishing, pp. 1-94, 2021, doi: 10.1007/978-3-030-66190-8.

[11] A. D. P. Ariyanto, D. Purwitasari, and C. Fatichah, “A Systematic Review on Semantic Role Labeling for Information Extraction in Low-Resource Data,” IEEE Access, vol. 12, pp. 57917–57946, 2024, doi: 10.1109/ACCESS.2024.3392370.

[12] S. Anistya Ori and H. W. Susianti, “Preserving Javanese Language and Culture in The Digital Age : Challenge and Future Prospects,” LACULTOUR J. Lang. Cult. Tour., vol. 2, no. 2, pp. 79–88, Nov. 2023, doi: 10.52352/lacultour.v2i2.1212.

[13] A. Awal, “The evolution of linguistic rights throughout history and the major milestones,” Indones. J. Adv. Res., vol. 2, no. 9, pp. 1317–1334, Sep. 2023, doi: 10.55927/ijar.v2i9.5619.

[14] Supriyono, A. P. Wibawa, Suyono, and F. Kurniawan, “A survey of text summarization: Techniques, evaluation and challenges,” Nat. Lang. Process. J., vol. 7, p. 100070, Jun. 2024, doi: 10.1016/j.nlp.2024.100070.

[15] A. F. Aji et al., “One Country, 700+ Languages: NLP Challenges for Underrepresented Languages and Dialects in Indonesia,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022, vol. 1, pp. 7226–7249, doi: 10.18653/v1/2022.acl-long.500.

[16] E. Steigerwald et al., “Overcoming Language Barriers in Academia: Machine Translation Tools and a Vision for a Multilingual Future,” Bioscience, vol. 72, no. 10, pp. 988–998, Sep. 2022, doi: 10.1093/biosci/biac062.

[17] K. Liu, H. L. Kwok, J. Liu, and A. K. F. Cheung, “Sustainability and Influence of Machine Translation: Perceptions and Attitudes of Translation Instructors and Learners in Hong Kong,” Sustainability, vol. 14, no. 11, p. 6399, May 2022, doi: 10.3390/su14116399.

[18] L. Bowker, “Translation technology and ethics,” in The Routledge Handbook of Translation and Ethics, London ; New York : Routledge, 2020. | Series: Routledge handbooks in translation and interpreting studies: Routledge, 2020, pp. 262–278, doi: 10.4324/9781003127970-20.

[19] W.-J. Ko et al., “Adapting High-resource NMT Models to Translate Low-resource Related Languages without Parallel Data,” in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), May 2021, pp. 802–812, doi: 10.18653/v1/2021.acl-long.66.

[20] H. Li, J. Sha, and C. Shi, “Revisiting Back-Translation for Low-Resource Machine Translation Between Chinese and Vietnamese,” IEEE Access, vol. 8, pp. 119931–119939, 2020, doi: 10.1109/ACCESS.2020.3006129.

[21] S. Budiyanti, H. M. Siahaan, and K. Nugroho, “Social communication relation of Madurese people in Max Weber rationality perspective,” J. Stud. Komun. (Indonesian J. Commun. Stud., vol. 4, no. 2, p. 389, Jul. 2020, doi: 10.25139/jsk.v4i2.2447.

[22] N. Yannuar, T. Hoogervorst, and M. Klamer, “Examining Javanese Phonology Through Word-Reversal Practices,” Ocean. Linguist., vol. 61, no. 1, pp. 560–588, Jun. 2022, doi: 10.1353/ol.2022.0006.

[23] N. S. Habibi, M. Amiruddin, and U. R. Jannah, “The Work Of Madurese Culture In Business Activities,” KABILAH J. Soc. Community, vol. 7, no. 2, pp. 464–472, Dec. 2022. [Online]. Available at: https://ejournal.kopertais4.or.id/madura/index.php/kabilah/article/view/6382.

[24] A. Parmaxi and A. A. Demetriou, “Augmented reality in language learning: A state‐of‐the‐art review of 2014–2019,” J. Comput. Assist. Learn., vol. 36, no. 6, pp. 861–875, Dec. 2020, doi: 10.1111/jcal.12486.

[25] M. R. Costa-jussà et al., “Scaling neural machine translation to 200 languages,” Nature, vol. 630, no. 8018, pp. 841–846, Jun. 2024, doi: 10.1038/s41586-024-07335-x.

[26] S. Ranathunga, E.-S. A. Lee, M. Prifti Skenduli, R. Shekhar, M. Alam, and R. Kaur, “Neural Machine Translation for Low-resource Languages: A Survey,” ACM Comput. Surv., vol. 55, no. 11, pp. 1–37, Nov. 2023, doi: 10.1145/3567592.

[27] S. M. Singh and T. D. Singh, “Low resource machine translation of english–manipuri: A semi-supervised approach,” Expert Syst. Appl., vol. 209, p. 118187, Dec. 2022, doi: 10.1016/j.eswa.2022.118187.

[28] B. Zoph, D. Yuret, J. May, and K. Knight, “Transfer Learning for Low-Resource Neural Machine Translation,” in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016, pp. 1568–1575, doi: 10.18653/v1/D16-1163.

[29] Z. Liu, G. I. Winata, and P. Fung, “Continual Mixed-Language Pre-Training for Extremely Low-Resource Neural Machine Translation,” in Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, 2021, pp. 2706–2718, doi: 10.18653/v1/2021.findings-acl.239.

[30] Y. Liu et al., “Multilingual Denoising Pre-training for Neural Machine Translation,” Trans. Assoc. Comput. Linguist., vol. 8, pp. 726–742, Dec. 2020, doi: 10.1162/tacl_a_00343.

[31] E. A. Platanios, M. Sachan, G. Neubig, and T. Mitchell, “Contextual Parameter Generation for Universal Neural Machine Translation,” in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Aug. 2018, pp. 425–435, doi: 10.18653/v1/D18-1039.

[32] Y. Qi, D. Sachan, M. Felix, S. Padmanabhan, and G. Neubig, “When and Why Are Pre-Trained Word Embeddings Useful for Neural Machine Translation?,” in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), Apr. 2018, vol. 2, pp. 529–535, doi: 10.18653/v1/N18-2084.

[33] A. Magueresse, V. Carles, and E. Heetderks, “Low-resource Languages: A Review of Past Work and Future Challenges,” arXiv, pp. 1–14, 2020, [Online]. Available at: http://arxiv.org/abs/2006.07264.

[34] C. Lignos, N. Holley, C. Palen-Michel, and J. Sälevä, “Toward More Meaningful Resources for Lower-resourced Languages,” in Findings of the Association for Computational Linguistics: ACL 2022, Feb. 2022, pp. 523–532, doi: 10.18653/v1/2022.findings-acl.44.

[35] S. M. Alshraah, S. H. M. Issa, H. F. Migdadi, and A. S. Nishat, “Enhancing Pedagogical Strategies for Multilingual Classrooms in Foreign Language Education: Training Lecturers for Linguistic Diversity and Language Variation,” J. Lang. Teach. Res. , vol. 15, no. 2, pp. 654–663, Mar. 2024, doi: 10.17507/JLTR.1502.34.

[36] J. Jimenez, “Engagement and Language Diversity in the Modern Workplace: A Mixed-Method Second-Language Acquisition (SLA) Study,” Marymount University, pp. 1-24, 2023. [Online]. Available at: https://www.proquest.com/openview/4f37a667b8441ff34757d31d61162778/1?pq-origsite=gscholar&cbl=18750&diss=y.

[37] D. M. Sharma et al., “Unsung Challenges of Building and Deploying Language Technologies for Low Resource Language Communities.” NLPAI, pp. 211–219, 2019. [Online]. Available at: https://aclanthology.org/2019.icon-1.25/.

[38] R. Rubino, B. Marie, R. Dabre, A. Fujita, M. Utiyama, and E. Sumita, “Extremely low-resource neural machine translation for Asian languages,” Mach. Transl., vol. 34, no. 4, pp. 347–382, Dec. 2020, doi: 10.1007/s10590-020-09258-6.

[39] O. Ahia, J. Kreutzer, and S. Hooker, “The Low-Resource Double Bind: An Empirical Study of Pruning for Low-Resource Machine Translation,” in Findings of the Association for Computational Linguistics: EMNLP 2021, 2021, pp. 3316–3333, doi: 10.18653/v1/2021.findings-emnlp.282.

[40] S. Chauhan and P. Daniel, “A Comprehensive Survey on Various Fully Automatic Machine Translation Evaluation Metrics,” Neural Process. Lett., vol. 55, no. 9, pp. 12663–12717, Dec. 2023, doi: 10.1007/s11063-022-10835-4.

[41] S. K. Mondal, H. Zhang, H. M. D. Kabir, K. Ni, and H.-N. Dai, “Machine translation and its evaluation: a study,” Artif. Intell. Rev., vol. 56, no. 9, pp. 10137–10226, Sep. 2023, doi: 10.1007/s10462-023-10423-5.

[42] M. Maimaiti, Y. Liu, H. Luan, and M. Sun, “Enriching the transfer learning with pre-trained lexicon embedding for low-resource neural machine translation,” Tsinghua Sci. Technol., vol. 27, no. 1, pp. 150–163, Feb. 2022, doi: 10.26599/TST.2020.9010029.

[43] A. Chronopoulou, C. Baziotis, and A. Potamianos, “An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models,” in Proceedings of the 2019 Conference of the North, 2019, vol. 1, pp. 2089–2095, doi: 10.18653/v1/N19-1213.

[44] Y. Ouali, C. Hudelot, and M. Tami, “An Overview of Deep Semi-Supervised Learning,” arXiv, pp. 1–44, Jun. 2020. [Online]. Available at: https://arxiv.org/pdf/2006.05278.

[45] M. Fomicheva et al., “Unsupervised Quality Estimation for Neural Machine Translation,” Trans. Assoc. Comput. Linguist., vol. 8, pp. 539–555, Dec. 2020, doi: 10.1162/tacl_a_00330.

[46] R. Dabre, A. Imankulova, M. Kaneko, and A. Chakrabarty, “Simultaneous Multi-Pivot Neural Machine Translation,” arXiv, pp. 1–7, Apr. 2021. [Online]. Available at: https://arxiv.org/pdf/2104.07410.

[47] Y. Cheng, “Joint Training for Pivot-Based Neural Machine Translation,” in Joint Training for Neural Machine Translation, Springer, Singapore, 2019, pp. 41–54, doi: 10.1007/978-981-32-9748-7_4.

[48] Y. Kim, P. Petrov, P. Petrushkov, S. Khadivi, and H. Ney, “Pivot-based Transfer Learning for Neural Machine Translation between Non-English Languages,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 866–876, doi: 10.18653/v1/D19-1080.

[49] M. R. Costa-Jussà, N. Casas, C. Escolano, and J. A. R. Fonollosa, “Chinese-Catalan,” ACM Trans. Asian Low-Resource Lang. Inf. Process., vol. 18, no. 4, pp. 1–8, Dec. 2019, doi: 10.1145/3312575.

[50] S. Ren, W. Chen, S. Liu, M. Li, M. Zhou, and S. Ma, “Triangular Architecture for Rare Language Translation,” in Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2018, vol. 1, pp. 56–65, doi: 10.18653/v1/P18-1006.

[51] S. Lu, W. Wei, X. Fu, and B. Xu, “Recursive neural network based word topology model for hierarchical phrase-based speech translation,” in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2014, pp. 7874–7878, doi: 10.1109/ICASSP.2014.6855133.

[52] M. Johnson et al., “Google’s Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation,” Trans. Assoc. Comput. Linguist., vol. 5, pp. 339–351, Dec. 2017, doi: 10.1162/tacl_a_00065.

[53] T.-L. Ha, J. Niehues, and A. Waibel, “Effective Strategies in Zero-Shot Neural Machine Translation,” in Proceedings of the 14th International Conference on Spoken Language Translation, 2017, pp. 105–112. [Online]. Available at: https://aclanthology.org/2017.iwslt-1.15/.

[54] A. D. Meilinda, H. Sujaini, and N. Safriadi, “Pivot Language Pontianak Malay to Bugis Using Neural Machine Translation,” J. Edukasi dan Penelit. Inform., vol. 9, no. 2, p. 234, Aug. 2023, doi: 10.26418/jp.v9i2.59813.

[55] H. Sujaini, “The Use of Indonesian as a Pivot Language in Madurese-Sundanese Machine Translation Using the Transfer and Triangulation Methods,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 2, pp. 170–175, Aug. 2019, doi: 10.29207/resti.v3i2.924.

[56] F. A. Ahda, A. P. Wibawa, D. Dwi Prasetya, and D. Arbian Sulistyo, “Comparison of Adam Optimization and RMS prop in Minangkabau-Indonesian Bidirectional Translation with Neural Machine Translation,” JOIV Int. J. Informatics Vis., vol. 8, no. 1, p. 231, Mar. 2024, doi: 10.62527/joiv.8.1.1818.

[57] A. Asadi and R. Safabakhsh, “The Encoder-Decoder Framework and Its Applications,” in Studies in Computational Intelligence, vol. 866, Springer, Cham, 2020, pp. 133–167, doi: 10.1007/978-3-030-31756-0_5.

[58] T. Widiyaningtyas, D. Dwi Prasetya, and H. W. Herwanto, “Time Loss Function-based Collaborative Filtering in Movie Recommender System,” Int. J. Intell. Eng. Syst., vol. 16, no. 6, pp. 1021–1030, Dec. 2023, doi: 10.22266/ijies2023.1231.84.

[59] A. P. Wibawa, I. T. Saputra, A. B. P. Utama, W. Lestari, and Z. N. Izdihar, “Long Short-Term Memory to Predict Unique Visitors of an Electronic Journal,” 2020 6th Int. Conf. Sci. Inf. Technol. Embrac. Ind. 4.0 Towar. Innov. Disaster Manag. ICSITech 2020, pp. 176–179, Oct. 2020, doi: 10.1109/ICSITECH49800.2020.9392031.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571  (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
 andri.pranolo.id@ieee.org (publication issues)

View IJAIN Stats

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0