Machine learning-based B2C software project success prediction model in Indonesia

(1) * Rudi Setiawan Mail (Trilogi University, Indonesia)
(2) Titik Khawa Abdul Rahman Mail (Asia e University, Malaysia)
*corresponding author

Abstract


The success of a software project is a crucial factor in the information technology industry, but it is often difficult to predict due to its complexity and high dynamics. This research aims to develop a model for predicting the success of software projects, particularly B2C e-business software in Indonesia, utilizing a machine learning approach. This study involved 28 variables that affect the success of software projects obtained from previous research. The dataset was compiled from the historical records of software projects from various software development companies in Indonesia. The predictive model was developed using Support Vector Machine and Artificial Neural Network algorithms, with hyperparameter tuning performed via Grid Search. The modelling process includes the pre-processing stage of data, which involves synthetic data generation due to inadequate data collection, as well as the application of several dataset mining techniques (SMOTE, ADASYN, SMOTE Tomek Links, and ADASYN Tomek Links). Additionally, model training and performance evaluation are conducted using a confusion matrix. The search for important features using the Shapley Additive Explanations method is also conducted to develop an automated recommendation system based on key factors that require improvement. The results showed that the SVM model with Grid Search tuning of hyperparameters in the SMOTE Tomek Links data test yielded the best performance, with an accuracy of 87.8%, demonstrating the significant potential of machine learning in identifying project success factors from the early stages. This study contributes to the development of decision-support tools for B2C project managers in Indonesia by providing accurate early predictions and interpretable recommendations.

Keywords


Software project prediction; Project success prediction; Success and failure software project; Software prediction; Software project management

   

DOI

https://doi.org/10.26555/ijain.v11i3.2123
      

Article metrics

Abstract views : 275 | PDF views : 45

   

Cite

   

Full Text

Download

References


[1] M. A. Akbar, A. A. Khan, S. Mahmood, and K. Smolander, “Successful management of cloud‐based global software development projects: A multivocal study,” J. Softw. Evol. Process, vol. 36, no. 4, p. e2527, Apr. 2024, doi: 10.1002/smr.2527.

[2] A. A. Vărzaru and C. G. Bocean, “Digital Transformation and Innovation: The Influence of Digital Technologies on Turnover from Innovation Activities and Types of Innovation,” Systems, vol. 12, no. 9, p. 359, Sep. 2024, doi: 10.3390/systems12090359.

[3] E. Loureiro, B. Gomes, J. Varajão, and C. Silva, “Information systems project success surveys - Insights from the last 30 years,” Heliyon, vol. 10, no. 23, p. e40619, Dec. 2024, doi: 10.1016/j.heliyon.2024.e40619.

[4] M. L. Prasetyo, R. A. Peranginangin, N. Martinovic, M. Ichsan, and H. Wicaksono, “Artificial intelligence in open innovation project management: A systematic literature review on technologies, applications, and integration requirements,” J. Open Innov. Technol. Mark. Complex., vol. 11, no. 1, p. 100445, Mar. 2025, doi: 10.1016/j.joitmc.2024.100445.

[5] A. Ardiansyah, M. I. Zulfa, A. Tarmuji, and F. H. Jabbar, “Optimization of use case point through the use of metaheuristic algorithm in estimating software effort,” Int. J. Adv. Intell. Informatics, vol. 10, no. 1, p. 109, Feb. 2024, doi: 10.26555/ijain.v10i1.1298.

[6] J. Schmidt, “Mitigating risk of failure in information technology projects: Causes and mechanisms,” Proj. Leadersh. Soc., vol. 4, p. 100097, Dec. 2023, doi: 10.1016/j.plas.2023.100097.

[7] “CHAOS Report Beyond Infinity,” The Standish Group, 2020. [Online]. Available at: https://www.standishgroup.com/.

[8] E. M. M. Alzeyani and C. Szabó, “Comparative Evaluation of Model Accuracy for Predicting Selected Attributes in Agile Project Management,” Mathematics, vol. 12, no. 16, p. 2529, Aug. 2024, doi: 10.3390/math12162529.

[9] L. Madeyski and S. Stradowski, “Predicting test failures induced by software defects: A lightweight alternative to software defect prediction and its industrial application,” J. Syst. Softw., vol. 223, p. 112360, May 2025, doi: 10.1016/j.jss.2025.112360.

[10] M. E. Nenni, F. De Felice, C. De Luca, and A. Forcina, “How artificial intelligence will transform project management in the age of digitization: a systematic literature review,” Manag. Rev. Q., vol. 75, no. 2, pp. 1669–1716, Jun. 2025, doi: 10.1007/s11301-024-00418-z.

[11] J. Alqahtani, A. Siddique, A. M. Aseere, A. Alasiry, and Q. N. Naveed, “Evaluating Success Factors of Software Project Management in Global Software Development,” IEEE Access, vol. 12, pp. 22345–22358, 2024, doi: 10.1109/ACCESS.2024.3360415.

[12] M. Monserrat, A. Mas, and A. Mesquida, “A Study of Factors That Influence the Software Project Success,” J. Softw. Evol. Process, vol. 37, no. 2, p. e2735, Feb. 2025, doi: 10.1002/smr.2735.

[13] M. N. Mata, J. M. Martins, and P. L. Inácio, “Impact of absorptive capacity on project success through mediating role of strategic agility: Project complexity as a moderator,” J. Innov. Knowl., vol. 8, no. 1, p. 100327, Jan. 2023, doi: 10.1016/j.jik.2023.100327.

[14] A. C. P. Junior, V. R. da Silva, and P. T. A. Junior, “Critical Success Factors for Agile Software Development,” IEEE Trans. Eng. Manag., vol. 71, pp. 14807–14823, 2024, doi: 10.1109/TEM.2024.3441829.

[15] Ahmad Abdullah N. Alghamdi, “Factors Affecting Success or Failure in Software Projects in the Kingdom of Saudi Arabia,” J. Electr. Syst., vol. 20, no. 9s, pp. 2895–2912, Jun. 2024, doi: 10.52783/jes.5051.

[16] L. Barros, C. Tam, and J. Varajão, “Agile software development projects–Unveiling the human-related critical success factors,” Inf. Softw. Technol., vol. 170, p. 107432, Jun. 2024, doi: 10.1016/j.infsof.2024.107432.

[17] T. Al-Rousan, “Success Factors for Conducting Software-Process Improvement in Web-Based Software Projects,” Cybern. Inf. Technol., vol. 24, no. 1, pp. 64–81, Mar. 2024, doi: 10.2478/cait-2024-0004.

[18] H. Hassan, M. A. Abdel-Fattah, and A. Ghoneim, “Risk Prediction Applied to Global Software Development using Machine Learning Methods,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 9, pp. 111–120, Dec. 2022, doi: 10.14569/IJACSA.2022.0130913.

[19] A. Kumar, M. Nadeem, and M. Shameem, “Metaheuristic-based cost-effective predictive modeling for DevOps project success,” Appl. Soft Comput., vol. 163, p. 111834, Sep. 2024, doi: 10.1016/J.ASOC.2024.111834.

[20] R. Hans and S. Marebane, “Are software projects evaluated using software teams’ success criteria? A systematic literature review,” Procedia Comput. Sci., vol. 219, pp. 1599–1608, Jan. 2023, doi: 10.1016/j.procs.2023.01.452.

[21] R. K. B. N and Y. Suresh, “Effective ANN Model based on Neuro-Evolution Mechanism for Realistic Software Estimates in the Early Phase of Software Development,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 2, pp. 182–193, 2022, doi: 10.14569/IJACSA.2022.0130223.

[22] F. Zhang, N. A. S. Abdullah, and M. M. Rosli, “Critical Success Factors of Agile Software Projects: A Review,” Eng. Technol. Appl. Sci. Res., vol. 14, no. 5, pp. 16866–16873, Oct. 2024, doi: 10.48084/etasr.8358.

[23] R.-H. Pfeiffer and J. Aaen, “Tools for monitoring software quality in information systems development and maintenance: five key challenges and a design proposal,” Int. J. Inf. Syst. Proj. Manag., vol. 12, no. 1, pp. 19–40, Mar. 2024, doi: 10.12821/ijispm120102.

[24] T. Agrawal, G. S. Walia, and V. K. Anu, “Development of a Software Design Error Taxonomy: A Systematic Literature Review,” SN Comput. Sci., vol. 5, no. 5, p. 467, Apr. 2024, doi: 10.1007/s42979-024-02797-2.

[25] H. Ting, M. A. Memon, R. Thurasamy, and J.-H. Cheah, “Snowball Sampling: A Review and Guidelines for Survey Research,” Asian J. Bus. Res., vol. 15, no. 1, pp. 1–15, Mar. 2025, doi: 10.14707/ajbr.250186.

[26] I. Goodfellow et al., “Generative adversarial networks,” Commun. ACM, vol. 63, no. 11, pp. 139–144, 2020, doi: 10.1145/3422622.

[27] J. Gui, Z. Sun, Y. Wen, D. Tao, and J. Ye, “A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 4, pp. 3313–3332, Apr. 2023, doi: 10.1109/TKDE.2021.3130191.

[28] D. Elreedy, A. F. Atiya, and F. Kamalov, “A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning,” Mach. Learn., vol. 113, no. 7, pp. 4903–4923, Jul. 2024, doi: 10.1007/s10994-022-06296-4.

[29] Z. Xu, D. Shen, Y. Kou, and T. Nie, “A Synthetic Minority Oversampling Technique Based on Gaussian Mixture Model Filtering for Imbalanced Data Classification,” IEEE Trans. Neural Networks Learn. Syst., vol. 35, no. 3, pp. 3740–3753, Mar. 2024, doi: 10.1109/TNNLS.2022.3197156.

[30] M. Carvalho, A. J. Pinho, and S. Brás, “Resampling approaches to handle class imbalance: a review from a data perspective,” J. Big Data, vol. 12, no. 1, p. 71, Mar. 2025, doi: 10.1186/s40537-025-01119-4.

[31] S. Feng, J. Keung, Y. Xiao, P. Zhang, X. Yu, and X. Cao, “Improving the undersampling technique by optimizing the termination condition for software defect prediction,” Expert Syst. Appl., vol. 235, p. 121084, Jan. 2024, doi: 10.1016/j.eswa.2023.121084.

[32] M. Mujahid et al., “Data oversampling and imbalanced datasets: an investigation of performance for machine learning and feature engineering,” J. Big Data, vol. 11, no. 1, p. 87, Jun. 2024, doi: 10.1186/s40537-024-00943-4.

[33] D.-K. Kim and Y. K. Chung, “Addressing Class Imbalances in Software Defect Detection,” J. Comput. Inf. Syst., vol. 64, no. 2, pp. 219–231, Mar. 2024, doi: 10.1080/08874417.2023.2187483.

[34] Q. Leng, J. Guo, J. Tao, X. Meng, and C. Wang, “OBMI: oversampling borderline minority instances by a two-stage Tomek link-finding procedure for class imbalance problem,” Complex Intell. Syst., vol. 10, no. 4, pp. 4775–4792, Aug. 2024, doi: 10.1007/s40747-024-01399-y.

[35] F. Nhita, Adiwijaya, and I. Kurniawan, “Improvement of Imbalanced Data Handling: A Hybrid Sampling Approach by using Adaptive Synthetic Sampling and Tomek links,” in 2023 Eighth International Conference on Informatics and Computing (ICIC), Dec. 2023, pp. 1–5, doi: 10.1109/ICIC60109.2023.10381929.

[36] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018.

[37] M. Nadim, M. Hassan, A. K. Mandal, C. K. Roy, B. Roy, and K. A. Schneider, “Comparative analysis of quantum and classical support vector classifiers for software bug prediction: an exploratory study,” Quantum Mach. Intell., vol. 7, no. 1, p. 32, Jun. 2025, doi: 10.1007/s42484-025-00236-w.

[38] N. Amaya-Tejera, M. Gamarra, J. I. Vélez, and E. Zurek, “A distance-based kernel for classification via Support Vector Machines,” Front. Artif. Intell., vol. 7, p. 1287875, Feb. 2024, doi: 10.3389/frai.2024.1287875.

[39] K.-L. Du, B. Jiang, J. Lu, J. Hua, and M. N. S. Swamy, “Exploring Kernel Machines and Support Vector Machines: Principles, Techniques, and Future Directions,” Mathematics, vol. 12, no. 24, p. 3935, Dec. 2024, doi: 10.3390/math12243935.

[40] M. Hofmann, M. F. P. Becker, C. Tetzlaff, and P. Mäder, “Concept transfer of synaptic diversity from biological to artificial neural networks,” Nat. Commun., vol. 16, no. 1, p. 5112, Jun. 2025, doi: 10.1038/s41467-025-60078-9.

[41] S. Chavlis and P. Poirazi, “Dendrites endow artificial neural networks with accurate, robust and parameter-efficient learning,” Nat. Commun., vol. 16, no. 1, p. 943, Jan. 2025, doi: 10.1038/s41467-025-56297-9.

[42] J. P. S. Rosa, D. J. D. Guerra, N. C. G. Horta, R. M. F. Martins, and N. C. C. Lourenço, “Overview of Artificial Neural Networks,” in SpringerBriefs in Applied Sciences and Technology, Springer, Cham, 2020, pp. 21–44, doi: 10.1007/978-3-030-35743-6_3.

[43] W. Guo, M. E. Fouda, A. M. Eltawil, and K. N. Salama, “Efficient training of spiking neural networks with temporally-truncated local backpropagation through time,” Front. Neurosci., vol. 17, p. 1047008, Apr. 2023, doi: 10.3389/fnins.2023.1047008.

[44] Y. Song, B. Millidge, T. Salvatori, T. Lukasiewicz, Z. Xu, and R. Bogacz, “Inferring neural activity before plasticity as a foundation for learning beyond backpropagation,” Nat. Neurosci., vol. 27, no. 2, pp. 348–358, Feb. 2024, doi: 10.1038/s41593-023-01514-1.

[45] S. Dohare, J. F. Hernandez-Garcia, Q. Lan, P. Rahman, A. R. Mahmood, and R. S. Sutton, “Loss of plasticity in deep continual learning,” Nature, vol. 632, no. 8026, pp. 768–774, Aug. 2024, doi: 10.1038/s41586-024-07711-7.

[46] M. Ogunsanya, J. Isichei, and S. Desai, “Grid search hyperparameter tuning in additive manufacturing processes,” Manuf. Lett., vol. 35, pp. 1031–1042, Aug. 2023, doi: 10.1016/j.mfglet.2023.08.056.

[47] J. T. Hancock, T. M. Khoshgoftaar, and J. M. Johnson, “Evaluating classifier performance with highly imbalanced Big Data,” J. Big Data, vol. 10, no. 1, p. 42, Apr. 2023, doi: 10.1186/s40537-023-00724-5.

[48] Y. Gebreyesus, D. Dalton, S. Nixon, D. De Chiara, and M. Chinnici, “Machine Learning for Data Center Optimizations: Feature Selection Using Shapley Additive exPlanation (SHAP),” Futur. Internet, vol. 15, no. 3, p. 88, Feb. 2023, doi: 10.3390/fi15030088.

[49] M. I. Hashfi and T. Raharjo, “Exploring the Challenges and Impacts of Artificial Intelligence Implementation in Project Management: A Systematic Literature Review,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 9, pp. 366–376, 2023, doi: 10.14569/IJACSA.2023.0140940.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571  (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
 andri.pranolo.id@ieee.org (publication issues)

View IJAIN Stats

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0