(2) Eko Mulyanto Yuniarno (Institut Teknologi Sepuluh Nopember, Indonesia)
(3) Eko Setijadi (Institut Teknologi Sepuluh Nopember, Indonesia)
(4) Mochamad Yusuf Alsagaff (University of Airlangga, Indonesia)
(5) Gijsbertus Jacob Verkerke (University of Groningen, Groningen, Netherlands)
(6) I Ketut Eddy Purnama (Institut Teknologi Sepuluh Nopember, Indonesia)
*corresponding author
AbstractHeart disease is a heart condition that sometimes causes a person to die suddenly. One indication is a rhythm disorder known as arrhythmia. Multi-class Arrhythmia Detection has followed: QRS complex detection procedure and arrhythmia classification based on the QRS complex morphology. We proposed an edge device that detects QRS complexes based on variance analysis (QVAT) and the arrhythmia classification based on the QRS complex spectrogram. The classifier uses two-dimensional convolutional neural network (2D CNN) deep learning. We use a single board computer and neural network compute stick to implement the edge device. The outcomes are a prototype device cardiologists use as a supporting tool for analysing ECG signals, and patients can also use it for self-tests to figure out their heart health. To evaluate the performance of our edge device, we tested using the MIT-BIH database because other methods also use the data. The QVAT sensitivity and predictive positive are 99.81% and 99.90%, respectively. Our classifier's accuracy, sensitivity, predictive positive, specificity, and F1-score are 99.82%, 99.55%, 99.55%, 99.89%, and 99.55%, respectively. The experiment result of arrhythmia classification shows that our method outperforms the others. Still, for r-peak detection, the QVAT implemented in an edge device is comparable to the other methods. In future work, we can improve the performance of r-peak detection using the double-check algorithm in QVAT and cross-check the QRS complex detection by adding 1 class to the classifier, namely the non-QRS class.
KeywordsArrhythmia; Deep Learning; Electrocardiogram; Arrhythmia; Edge Computing
|
DOIhttps://doi.org/10.26555/ijain.v9i3.1061 |
Article metricsAbstract views : 510 | PDF views : 132 |
Cite |
Full TextDownload |
References
[1] A. Pomprapa, W. Ahmed, A. Stollenwerk, S. Kowalewski, and S. Leonhardt, “Deep Learning of Arrhythmia Analysis Based on Convolutional Neural Network,” Int. J. Bioelectromagn., vol. 21, no. 1, pp. 48–58, Mar. 2019, [Online]. Available at: http://publications.rwth-aachen.de/record/759056/files/759056.pdf.
[2] C. Carol J. Jacobson, K. Marzlin, and C. Webner, “Cardiovascular nursing practice, ” Cardiovascular Nursing Education Associates, p. 475, 2020, [Online]. Available at: https://books.google.com/books/about/Cardiovascular_Nursing_Practice.html?id=vHQNzgEACAAJ.
[3] J. Pan and W. J. Tompkins, “Deep Learning of Arrhythmia Analysis Based on Convolutional Neural Network,” IEEE Trans. Biomed. Eng., vol. BME-32, no. 3, pp. 230–236, Mar. 1985, doi: 10.1109/TBME.1985.325532.
[4] J. Rahul, M. Sora, and L. D. Sharma, “A novel and lightweight P, QRS, and T peaks detector using adaptive thresholding and template waveform,” Comput. Biol. Med., vol. 132, p. 104307, May 2021, doi: 10.1016/j.compbiomed.2021.104307.
[5] C. B. Gungor, P. P. Mercier, and H. Toreyin, “A Stochastic Resonance Electrocardiogram Enhancement Algorithm for Robust QRS Detection,” IEEE J. Biomed. Heal. Informatics, vol. 26, no. 8, pp. 3743–3754, Aug. 2022, doi: 10.1109/JBHI.2022.3178109.
[6] A. Kurniawan, E. M. Yuniarno, E. Setijadi, M. Yusuf, and I. K. Eddy Purnama, “QVAT: QRS Complex Detection based on Variance Analysis and Adaptive Threshold for Electrocardiogram Signal,” in 2020 International Seminar on Intelligent Technology and Its Applications (ISITIA), Jul. 2020, pp. 175–179, doi: 10.1109/ISITIA49792.2020.9163784.
[7] K. Zhao, Y. Li, G. Wang, Y. Pu, and Y. Lian, “A robust QRS detection and accurate R-peak identification algorithm for wearable ECG sensors,” Sci. China Inf. Sci., vol. 64, no. 8, p. 182401, Aug. 2021, doi: 10.1007/s11432-020-3150-2.
[8] J. Malik, E. Z. Soliman, and H.-T. Wu, “An adaptive QRS detection algorithm for ultra-long-term ECG recordings,” J. Electrocardiol., vol. 60, pp. 165–171, May 2020, doi: 10.1016/j.jelectrocard.2020.02.016.
[9] Z. Hao, X. Zhang, and Z. Lai, “Adaptive R-Peak Detection Algorithm Based on Brown Exponential Smoothing Model,” IEEE Access, vol. 10, pp. 114355–114363, 2022, doi: 10.1109/ACCESS.2022.3218308.
[10] A. Habib, C. Karmakar, and J. Yearwood, “Impact of ECG Dataset Diversity on Generalization of CNN Model for Detecting QRS Complex,” IEEE Access, vol. 7, pp. 93275–93285, 2019, doi: 10.1109/ACCESS.2019.2927726.
[11] B. Yuen, X. Dong, and T. Lu, “Detecting Noisy ECG QRS Complexes Using WaveletCNN Autoencoder and ConvLSTM,” IEEE Access, vol. 8, pp. 143802–143817, 2020, doi: 10.1109/ACCESS.2020.3012904.
[12] P. Tirado-Martin, J. Liu-Jimenez, J. Sanchez-Casanova, and R. Sanchez-Reillo, “QRS Differentiation to Improve ECG Biometrics under Different Physical Scenarios Using Multilayer Perceptron,” Appl. Sci., vol. 10, no. 19, p. 6896, Oct. 2020, doi: 10.3390/app10196896.
[13] P. Sharma and S. K. Dinkar, “A Linearly Adaptive Sine–Cosine Algorithm with Application in Deep Neural Network for Feature Optimization in Arrhythmia Classification using ECG Signals,” Knowledge-Based Syst., vol. 242, p. 108411, Apr. 2022, doi: 10.1016/j.knosys.2022.108411.
[14] A. H. Khan, M. Hussain, and M. K. Malik, “Arrhythmia Classification Techniques Using Deep Neural Network,” Complexity, vol. 2021, pp. 1–10, Apr. 2021, doi: 10.1155/2021/9919588.
[15] L. Sun, Y. Wang, Z. Qu, and N. N. Xiong, “BeatClass: A Sustainable ECG Classification System in IoT-Based eHealth,” IEEE Internet Things J., vol. 9, no. 10, pp. 7178–7195, May 2022, doi: 10.1109/JIOT.2021.3108792.
[16] H. Wang et al., “QRS detection of ECG signal using U-Net and DBSCAN,” Multimed. Tools Appl., vol. 81, no. 10, pp. 13319–13333, Apr. 2022, doi: 10.1007/s11042-021-10994-x.
[17] P. Pławiak and U. R. Acharya, “Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals,” Neural Comput. Appl., vol. 32, no. 15, pp. 11137–11161, Aug. 2020, doi: 10.1007/s00521-018-03980-2.
[18] U. R. Acharya et al., “Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals,” Appl. Intell., vol. 49, no. 1, pp. 16–27, Jan. 2019, doi: 10.1007/s10489-018-1179-1.
[19] Y. Li, R. Qian, and K. Li, “Inter-patient arrhythmia classification with improved deep residual convolutional neural network,” Comput. Methods Programs Biomed., vol. 214, p. 106582, Feb. 2022, doi: 10.1016/j.cmpb.2021.106582.
[20] B. Hou, J. Yang, P. Wang, and R. Yan, “LSTM-Based Auto-Encoder Model for ECG Arrhythmias Classification,” IEEE Trans. Instrum. Meas., vol. 69, no. 4, pp. 1232–1240, Apr. 2020, doi: 10.1109/TIM.2019.2910342.
[21] R. Wang, J. Fan, and Y. Li, “Deep Multi-Scale Fusion Neural Network for Multi-Class Arrhythmia Detection,” IEEE J. Biomed. Heal. Informatics, vol. 24, no. 9, pp. 2461–2472, Sep. 2020, doi: 10.1109/JBHI.2020.2981526.
[22] M. Hammad, A. M. Iliyasu, A. Subasi, E. S. L. Ho, and A. A. A. El-Latif, “A Multitier Deep Learning Model for Arrhythmia Detection,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–9, 2021, doi: 10.1109/TIM.2020.3033072.
[23] N. S. Sathawane, U. Gokhale, D. Padole, and S. Wankhede, “Inception based GAN for ECG arrhythmia classification,” Int. J. Nonlinear Anal. Appl., vol. 12, no. Special Issue, pp. 1585–1594, Jan. 2021, doi: 10.22075/IJNAA.2021.5831.
[24] M. A. Belkadi, A. Daamouche, and F. Melgani, “A deep neural network approach to QRS detection using autoencoders,” Expert Syst. Appl., vol. 184, p. 115528, Dec. 2021, doi: 10.1016/j.eswa.2021.115528.
[25] T. C. Lu, P. Liu, X. Gao, and Q. Y. Lu, “A Portable ECG Monitor with Low Power Consumption and Small Size Based on AD8232 Chip,” Appl. Mech. Mater., vol. 513–517, pp. 2884–2887, Feb. 2014, doi: 10.4028/www.scientific.net/AMM.513-517.2884.
[26] R. L. Devi and V. Kalaivani, “Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG,” J. Supercomput., vol. 76, no. 9, pp. 6533–6544, Sep. 2020, doi: 10.1007/s11227-019-02873-y.
[27] M. A. Scrugli, D. Loi, L. Raffo, and P. Meloni, “An Adaptive Cognitive Sensor Node for ECG Monitoring in the Internet of Medical Things,” IEEE Access, vol. 10, pp. 1688–1705, 2022, doi: 10.1109/ACCESS.2021.3136793.
[28] G. Sivapalan, K. K. Nundy, S. Dev, B. Cardiff, and D. John, “ANNet: A Lightweight Neural Network for ECG Anomaly Detection in IoT Edge Sensors,” IEEE Trans. Biomed. Circuits Syst., vol. 16, no. 1, pp. 24–35, Feb. 2022, doi: 10.1109/TBCAS.2021.3137646.
[29] E. Moghadas, J. Rezazadeh, and R. Farahbakhsh, “An IoT patient monitoring based on fog computing and data mining: Cardiac arrhythmia usecase,” Internet of Things, vol. 11, p. 100251, Sep. 2020, doi: 10.1016/j.iot.2020.100251.
[30] M. Hartmann, H. Farooq, and A. Imran, “Distilled Deep Learning based Classification of Abnormal Heartbeat Using ECG Data through a Low Cost Edge Device,” in 2019 IEEE Symposium on Computers and Communications (ISCC), Jun. 2019, vol. 2019-June, pp. 1068–1071, doi: 10.1109/ISCC47284.2019.8969657.
[31] G. B. Moody and R. G. Mark, “The impact of the MIT-BIH Arrhythmia Database,” IEEE Eng. Med. Biol. Mag., vol. 20, no. 3, pp. 45–50, 2001, doi: 10.1109/51.932724.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571 (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
andri.pranolo.id@ieee.org (publication issues)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0