Estimating the function of oscillatory components in SSA-based forecasting model

(1) Winita Sulandari Mail (Department of Mathematics, Universitas Gadjah Mada, Indonesia)
(2) * Subanar Subanar Mail (Department of Mathematics, Universitas Gadjah Mada, Indonesia)
(3) Suhartono Suhartono Mail (Department of Statistics, Institut Teknologi Sepuluh Nopember, Indonesia)
(4) Herni Utami Mail (Department of Mathematics, Universitas Gadjah Mada, Indonesia)
(5) Muhammad Hisyam Lee Mail (Department of Mathematical Sciences, Universiti Teknologi Malaysia, Malaysia)
*corresponding author

Abstract


The study of SSA-based forecasting model is always interesting due to its capability in modeling trend and multiple seasonal time series. The aim of this study is to propose an iterative ordinary least square (OLS) for estimating the oscillatory with time-varying amplitude model that usually found in SSA decomposition. We compare the results with those obtained by nonlinear least square based on Levenberg Marquardt (NLM) method. A simulation study based on the time series data which has a linear amplitude modulated sinusoid component is conducted to investigate the error of estimated parameters of the model obtained by the proposed method. A real data series was also considered for the application example. The results show that in terms of forecasting accuracy, the SSA-based model where the oscillatory components are obtained by iterative OLS is nearly the same with that is obtained by the NLM method.

Keywords


Oscillatory; Time-varying; SSA; OLS; NLM

   

DOI

https://doi.org/10.26555/ijain.v5i1.312
      

Article metrics

Abstract views : 1978 | PDF views : 310

   

Cite

   

Full Text

Download

References


[1] D. S. Broomhead and G. P. King, “Extracting qualitative dynamics from experimental data,” Phys. Nonlinear Phenom., vol. 20, no. 2–3, pp. 217–236, 1986, doi: 10.1016/0167-2789(86)90031-X.

[2] K. Fraedrich, “Estimating the dimensions of weather and climate attractors,” J. Atmospheric Sci., vol. 43, no. 5, pp. 419–432, 1986, doi: 10.1175/1520-0469(1986)043<0419:ETDOWA>2.0.CO;2.

[3] R. Vautard and M. Ghil, “Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series,” Phys. Nonlinear Phenom., vol. 35, no. 3, pp. 395–424, 1989, doi:
10.1016/0167-2789(89)90077-8
.

[4] N. Golyandina, V. Nekrutkin, and A. Zhigljavsky, Analysis of Time Series Structure: SSA and related techniques, vol. 90. Chapman & Hall/CRC, Boca Raton, FL, 2001, doi: 10.1201/9781420035841.

[5] N. Golyandina, “On the choice of parameters in singular spectrum analysis and related subspace-based methods,” Stat Interface, vol. 3, no. 3, pp. 259–279, 2010, doi: 10.4310/SII.2010.v3.n3.a2.

[6] N. Golyandina and A. Korobeynikov, “Basic singular spectrum analysis and forecasting with R,” Comput. Stat. Data Anal., vol. 71, pp. 934–954, 2014, doi: 10.1016/j.csda.2013.04.009.

[7] H. Hassani, “Singular Spectrum Analysis: Methodology and Comparison,” J. Data Sci., vol. 5, pp. 239–257, 2007, available at: http://www.jds-online.com/file_download/133/JDS-396.pdf.

[8] H. Hassani, S. Heravi, and A. Zhigljavsky, “Forecasting European industrial production with singular spectrum analysis,” Int. J. Forecast., vol. 25, no. 1, pp. 103–118, 2009, doi: 10.1016/j.ijforecast.2008.09.007.

[9] H. Hassani, R. Mahmoudvand, H. N. Omer, and E. S. Silva, “A preliminary investigation into the effect of outlier (s) on Singular Spectrum Analysis,” Fluct. Noise Lett., vol. 13, no. 04, p. 1450029, 2014, doi: 10.1142/S0219477514500291.

[10] H. Hassani, A. S. Soofi, and A. Zhigljavsky, “Predicting Daily Exchange Rate with Singular Spectrum Analysis Data,” Nonlinear Anal. Real World Appl., vol. 11, no. 3, pp. 2023–2034, 2010, doi: 10.1016/j.nonrwa.2009.05.008.

[11] M. A. R. Khan and D. S. Poskitt, “On The Theory and Practice of Singular Spectrum Analysis Forecasting,” Monash University, Department of Econometrics and Business Statistics, 2014, avilable at: https://ideas.repec.org/p/msh/ebswps/2014-3.html.

[12] R. Vautard and M. Ghil, “Interdecadal oscillations and the warming trend in global temperature time series,” Nature, vol. 350, no. 6316, p. 324, 1991, doi: 10.1038/350324a0.

[13] R. Vautard, P. Yiou, and M. Ghil, “Singular-spectrum analysis: A toolkit for short, noisy chaotic signals,” Phys. Nonlinear Phenom., vol. 58, no. 1, pp. 95–126, 1992, doi: 10.1016/0167-2789(92)90103-T.

[14] N. Golyandina and A. Zhigljavsky, Singular Spectrum Analysis for time series. Springer Science & Business Media, 2013, doi: 10.1007/978-3-642-34913-3.

[15] A. H. Vahabie, M. M. R. Yousefi, B. N. Araabi, C. Lucas, and S. Barghinia, “Combination of singular spectrum analysis and autoregressive model for short term load forecasting,” in Power Tech, 2007 IEEE Lausanne, 2007, pp. 1090–1093, doi: 10.1109/PCT.2007.4538467.

[16] Q. Zhang, B.-D. Wang, B. He, Y. Peng, and M.-L. Ren, “Singular spectrum analysis and ARIMA hybrid model for annual runoff forecasting,” Water Resour. Manag., vol. 25, no. 11, pp. 2683–2703, 2011, doi: 10.1007/s11269-011-9833-y.

[17] H. Li, L. Cui, and S. Guo, “A hybrid short-term power load forecasting model based on the singular spectrum analysis and autoregressive model,” Adv. Electr. Eng., vol. 2014, 2014, doi: 10.1155/2014/424781.

[18] S. Suhartono, S. Isnawati, N. A. Salehah, D. D. Prastyo, H. Kuswanto, and M. H. Lee, “Hybrid SSA-TSR-ARIMA for water demand forecasting,” Int. J. Adv. Intell. Inform., vol. 4, no. 3, pp. 238–250, Nov. 2018, doi: 10.26555/ijain.v4i3.275.

[19] W. Sulandari, S. Subanar, S. Suhartono, and H. Utami, “Forecasting Time Series with Trend and Seasonal Patterns Based on SSA,” in 2017 3rd International Conference on Science in Information Technology (ICSITech) “Theory and Applicattion of IT for Education, Industry and Society in Big Data Era,” Bandung, Indonesia, 2017, pp. 694–699, doi: 10.1109/ICSITech.2017.8257193.

[20] S. M. Kay, Modern Spectral Estimation: Theory and Application, 1 edition. Upper Saddle River, N.J: Prentice Hall, 1999, available at: Google Scholar.

[21] Y. Pantazis, O. Rosec, and Y. Stylianou, “Iterative estimation of sinusoidal signal parameters,” IEEE Signal Process. Lett., vol. 17, no. 5, pp. 461–464, 2010, doi: 10.1109/LSP.2010.2043153.

[22] A. Bánhalmi, K. Kovács, A. Kocsor, and L. Tóth, “Fundamental frequency estimation by least-squares harmonic model fitting,” in Ninth European Conference on Speech Communication and Technology, 2005, available at: http://www.inf.u-szeged.hu/~kocsor/publications/Papers/2005/konferencia-telj/Conf-2005-EuroSpeech-BA/Web/BKK05.pdf.

[23] K. F. Chen, “Estimating parameters of a sine wave by separable nonlinear least squares fitting,” IEEE Trans. Instrum. Meas., vol. 59, no. 12, pp. 3214–3217, 2010, doi: 10.1109/TIM.2010.2047298.

[24] D. Liu, O. Gibaru, and W. Perruquetti, “Parameters estimation of a noisy sinusoidal signal with time-varying amplitude,” in Control & Automation (MED), 2011 19th Mediterranean Conference on, 2011, pp. 570–575, doi: 10.1109/MED.2011.5983186.

[25] J.-M. Valin, D. V. Smith, C. Montgomery, and T. B. Terriberry, “Low-Complexity Iterative Sinusoidal Parameter Estimation,” ArXiv Prepr. ArXiv160301824, 2016, available at: https://arxiv.org/pdf/1603.01824.pdf.

[26] W. Sulandari, Subanar, Suhartono, and H. Utami, “Amplitude-Modulated Sinusoidal Model for The Periodic Components of SSA Decomposition,” in The 2018 International Symposium on Advanced Intelligent Informatics (SAIN) “Revolutionize Intelligent Informatics Spectrum for Humanity,” Yogyakarta-Indonesia, 2018, pp. 66–71, available at: https://ieeexplore.ieee.org/Xplore/home.jsp.

[27] W. Sulandari, S. Subanar, S. Suhartono, and H. Utami, “An Empirical Study of Error Evaluation in Trend and Multiple Seasonal Time Series Forecasting Based on SSA,” Pak. J. Stat. Oper. Res., vol. 14, no. 4, pp. 945–960, 2018, doi: 10.18187/pjsor.v14i4.2443.

[28] D. N. Gujarati, Basic econometrics. Tata McGraw-Hill Education, 2009, available at : Google Scholar.

[29] H. Hassani and D. Thomakos, “A review on singular spectrum analysis for economic and financial time series,” Stat. Interface, vol. 3, no. 3, pp. 377–397, 2010, doi: 10.4310/SII.2010.v3.n3.a11.

[30] J. B. Elsner and A. A. Tsonis, Singular spectrum analysis: a new tool in time series analysis. Springer Science & Business Media, 1996, doi: 10.1007/978-1-4757-2514-8.

[31] L. J. Soares and M. C. Medeiros, “Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data,” Int. J. Forecast., vol. 24, no. 4, pp. 630–644, 2008, doi: 10.1016/j.ijforecast.2008.08.003.

[32] M. H. Kutner, C. J. Nachtsheim, and J. N. Dr, Applied Linear Regression Models- 4th Edition with Student CD, 4 edition. Boston; Montreal: McGraw-Hill Education, 2004, available at : Google Scholar.

[33] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast accuracy,” Int. J. Forecast., vol. 22, no. 4, pp. 679–688, Oct. 2006, doi: 10.1016/j.ijforecast.2006.03.001.

[34] G. Lebanon, Bias, variance, and mse of estimators. Technical Notes, Georgia: Georgia, 2010, available at: http://theanalysisofdata.com/notes/estimators1.pdf.

[35] W. W.-S. Wei, Time series analysis: Univariate and Multivariate Methods, 2nd ed. Pearson Addison-Wesley, 2006, avilable at : Google Scholar.

[36] H. Gavin, “The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems,” Dep. Civ. Environ. Eng. Duke Univ., pp. 1–15, 2011, available at: http://people.duke.edu/~hpgavin/ce281/lm.pdf.

[37] D. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear Parameters,” J. Soc. Ind. Appl. Math., vol. 11, no. 2, pp. 431–441, Jun. 1963, doi: 10.1137/0111030.

[38] J. J. Moré, “The Levenberg-Marquardt algorithm: implementation and theory,” in Numerical analysis, Springer, 1978, pp. 105–116, doi: 10.1007/BFb0067700.

[39] B. G. Quinn, “Estimating frequency by interpolation using Fourier coefficients,” IEEE Trans. Signal Process., vol. 42, no. 5, pp. 1264–1268, 1994, doi: 10.1109/78.295186.

[40] S. Makridakis and M. Hibon, “The M3-Competition: results, conclusions and implications,” Int. J. Forecast., vol. 16, pp. 451–476, 2000, doi: 10.1016/S0169-2070(00)00057-1.

[41] G. P. Zhang, B. E. Patuwo, and M. Y. Hu, “A simulation study of artificial neural networks for nonlinear time-series forecasting,” Comput. Oper. Res., vol. 28, no. 4, pp. 381–396, Apr. 2001, doi: 10.1016/S0305-0548(99)00123-9.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571  (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
   andri.pranolo.id@ieee.org (publication issues)

View IJAIN Stats

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0