(2) Wilson Nwankwo (Edo University Iyamho, Nigeria)
(3) Edith Akpevwe Siloko (University of Benin, Nigeria)
*corresponding author
AbstractOne of the fundamental data analytics tools in statistical estimation is the non-parametric kernel method that involves probability estimates production. The method uses the observations to obtain useful statistical information to aid the practicing statistician in decision making and further statistical investigations. The kernel techniques primarily examine essential characteristics in a data set, and this research aims to introduce new kernel functions that can easily detect inherent properties in any given observations. However, accurate application of kernel estimator as data analytics apparatus requires the kernel function and smoothing parameter that regulates the level of smoothness applied to the estimates. A plethora of kernel functions of different families and smoothing parameter selectors exist in the literature, but no one method is universally acceptable in all situations. Hence, more kernel functions with smoothing parameter selectors have been propounded customarily in density estimation. This article proposes a distinct kernel family from the beta polynomial kernel family using the exponential progression in its derivation. The newly proposed kernel family was evaluated with simulated and life data. The outcomes clearly indicated that this kernel family could compete favorably well with other kernel families in density estimation. A further comparison of numerical results of the new family and the existing beta family revealed that the new family outperformed the classical beta kernel family with simulation and real data examples with the aid of asymptotic mean integrated squared error (AMISE) as criterion function. The information obtained from the data analysis of this research could be used for decision making in an organization, especially when human and material resources are to be considered. In addition, Kernel functions are vital tools for data analysis and data visualization; hence the newly proposed functions are vital exploratory tools.
KeywordsKernel Function; Smoothing Parameter; Beta Polynomial; AMISE
|
DOIhttps://doi.org/10.26555/ijain.v6i3.456 |
Article metricsAbstract views : 1742 | PDF views : 208 |
Cite |
Full TextDownload |
References
[1] S. Węglarczyk, “Kernel density estimation and its application,” ITM Web Conf., vol. 23, p. 00037, Nov. 2018, doi: 10.1051/itmconf/20182300037.
[2] B. W. Silverman, Density Estimation for Statistics and Data Analysis. Boston, MA: Springer US, 1986, doi: 10.1007/978-1-4899-3324-9.
[3] I. U. Siloko, O. Ikpotokin, F. O. Oyegue, C. C. Ishiekwene, and B. A. E. Afere, “A note on application of kernel derivatives in density estimation with the univariate case,” J. Stat. Manag. Syst., vol. 22, no. 3, pp. 415–423, Apr. 2019, doi: 10.1080/09720510.2018.1524956.
[4] I. U. Siloko, O. Ikpotokin, and E. A. Siloko, “On Hybridizations of Fourth Order Kernel of the Beta Polynomial Family.,” Pakistan J. Stat. Oper. Res., pp. 819–829, Sep. 2019, doi: 10.18187/pjsor.v15i3.2625.
[5] P. J. Green, K. Łatuszyński, M. Pereyra, and C. P. Robert, “Bayesian computation: a summary of the current state, and samples backwards and forwards,” Stat. Comput., vol. 25, no. 4, pp. 835–862, Jul. 2015, doi: 10.1007/s11222-015-9574-5.
[6] W. J. Lee, G. P. Mendis, M. J. Triebe, and J. W. Sutherland, “Monitoring of a machining process using kernel principal component analysis and kernel density estimation,” J. Intell. Manuf., vol. 31, no. 5, pp. 1175–1189, Jun. 2020, doi: 10.1007/s10845-019-01504-w.
[7] W. Härdle, A. Werwatz, M. Müller, and S. Sperlich, Nonparametric and Semiparametric Models. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, doi: 10.1007/978-3-642-17146-8
[8] J. S. Simonoff, Smoothing Methods in Statistics. New York, NY: Springer New York, 1996, doi: 10.1007/978-1-4612-4026-6
[9] O. Ikpotokin and I. U. Siloko, “A Comparative Analysis of Bootstrap Multivariate Exponentially-Weighted Moving Average (BMEWMA) Control Limits,” Ind. Eng. Manag. Syst., vol. 18, no. 3, pp. 315–329, Sep. 2019, doi: 10.7232/iems.2019.18.3.315.
[10] A. Helu, H. Samawi, H. Rochani, J. Yin, and R. Vogel, “Kernel density estimation based on progressive type-II censoring,” J. Korean Stat. Soc., vol. 49, no. 2, pp. 475–498, Jun. 2020, doi: 10.1007/s42952-019-00022-y.
[11] I. U. Siloko, O. Ikpotokin, F. O. Oyegue, E. A. Siloko, and C. C. Ishiekwene, “Numerical computation of efficiency of beta polynomial kernel using product approach.,” J. Appl. Sci. Technol., vol. 23, 2019, Available at: Google Scholar.
[12] C.-L. Li, W.-C. Chang, Y. Mroueh, Y. Yang, and B. Póczos, “Implicit kernel learning,” arXiv Prepr. arXiv1902.10214, 2019, Available at: Google Scholar
[13] M. Klusch, S. Lodi, and G. Moro, “Distributed clustering based on sampling local density estimates,” in IJCAI, 2003, vol. 3, pp. 485–490, Available at: Google Scholar
[14] X. Nguyen, M. J. Wainwright, and M. I. Jordan, “Decentralized detection and classification using kernel methods,” in Twenty-first international conference on Machine learning - ICML ’04, 2004, p. 80, doi: 10.1145/1015330.1015438.
[15] Y. Hu, H. Chen, J. Lou, and J. Li, “Distributed Density Estimation Using Non-parametric Statistics,” in 27th International Conference on Distributed Computing Systems (ICDCS ’07), 2007, pp. 28–28, doi: 10.1109/ICDCS.2007.100.
[16] B. Albadareen and N. Ismail, “Several new kernel estimators for population abundance,” 2017, p. 080018, doi: 10.1063/1.4981002.
[17] A. Gramacki, Nonparametric Kernel Density Estimation and Its Computational Aspects, vol. 37. Cham: Springer International Publishing, 2018, doi: 10.1007/978-3-319-71688-6
[18] H. Samawi, H. Rochani, J. Yin, D. Linder, and R. Vogel, “Notes on kernel density based mode estimation using more efficient sampling designs,” Comput. Stat., vol. 33, no. 2, pp. 1071–1090, Jun. 2018, doi: 10.1007/s00180-017-0787-2.
[19] J. Jiang, Y.-L. He, D.-X. Dai, and J. Z. Huang, “A new kernel density estimator based on the minimum entropy of data set,” Inf. Sci. (Ny)., vol. 491, pp. 223–231, Jul. 2019, doi: 10.1016/j.ins.2019.04.010.
[20] S. Wang, A. Li, K. Wen, and X. Wu, “Robust kernels for kernel density estimation,” Econ. Lett., vol. 191, p. 109138, Jun. 2020, doi: 10.1016/j.econlet.2020.109138.
[21] M. Rosenblatt, “Remarks on a Multivariate Transformation,” Ann. Math. Stat., vol. 23, no. 3, pp. 470–472, Sep. 1952, doi: 10.1214/aoms/1177729394.
[22] E. Parzen, “On Estimation of a Probability Density Function and Mode,” Ann. Math. Stat., vol. 33, no. 3, pp. 1065–1076, Sep. 1962, doi: 10.1214/aoms/1177704472.
[23] D. W. Scott, Multivariate Density Estimation. Wiley, 2015. doi: 10.1002/9781118575574
[24] B. E. Hansen, “Exact Mean Integrated Squared Error of Higher Order Kernel Estimators,” Econom. Theory, vol. 21, no. 06, Dec. 2005, doi: 10.1017/S0266466605050528.
[25] J. S. Marron and D. Nolan, “Canonical kernels for density estimation,” Stat. Probab. Lett., vol. 7, no. 3, pp. 195–199, Dec. 1988, doi: 10.1016/0167-7152(88)90050-8.
[26] T. Duong, “Spherically symmetric multivariate beta family kernels,” Stat. Probab. Lett., vol. 104, pp. 141–145, Sep. 2015, doi: 10.1016/j.spl.2015.05.012.
[27] C. Lacour, P. Massart, and V. Rivoirard, “Estimator Selection: a New Method with Applications to Kernel Density Estimation,” Sankhya A, vol. 79, no. 2, pp. 298–335, Aug. 2017, doi: 10.1007/s13171-017-0107-5.
[28] S. R. Sain, “Multivariate locally adaptive density estimation,” Comput. Stat. Data Anal., vol. 39, no. 2, pp. 165–186, Apr. 2002, doi: 10.1016/S0167-9473(01)00053-6.
[29] I. Barbeito and R. Cao, “Nonparametric curve estimation and bootstrap bandwidth selection,” WIREs Comput. Stat., vol. 12, no. 3, May 2020, doi: 10.1002/wics.1488.
[30] J. Jarnicka, “Multivariate kernel density estimation with a parametric support,” Opusc. Math., vol. 29, no. 1, p. 41, 2009, doi: 10.7494/OpMath.2009.29.1.41.
[31] I. U. Siloko, E. A. Siloko, O. Ikpotokin, C. C. Ishiekwene, and B. A. Afere, “On Asymptotic Mean Integrated Squared Error’s Reduction Techniques in Kernel Density Estimation,” Int. J. Comput. Theor. Stat., vol. 06, no. 01, pp. 90–98, May 2019, doi: 10.12785/ijcts/060110.
[32] A. Azzalini and A. W. Bowman, “A Look at Some Data on the Old Faithful Geyser,” Appl. Stat., vol. 39, no. 3, p. 357, 1990, doi: 10.2307/2347385.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571 (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
andri.pranolo.id@ieee.org (publication issues)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0