Cable fault classification in ADSL copper access network using machine learning

(1) Nurul Bashirah Ghazali Mail (Universiti Tun Hussein Onn Malaysia, Malaysia)
(2) Dang Fillatina Hashim Mail (Universiti Tun Hussein Onn Malaysia, Malaysia)
(3) * Fauziahanim Che Seman Mail (Universiti Tun Hussein Onn Malaysia, Malaysia)
(4) Khalid Isa Mail (Universiti Tun Hussein Onn Malaysia, Malaysia)
(5) Khairun Nidzam Ramli Mail (Universiti Tun Hussein Onn Malaysia, Malaysia)
(6) Zuhairiah Zainal Abidin Mail (Universiti Tun Hussein Onn Malaysia, Malaysia)
(7) Saizalmursidi Md Mustam Mail (Universiti Tun Hussein Onn Malaysia, Malaysia)
(8) Mohammed Al Haek Mail (Universiti Tun Hussein Onn Malaysia, Malaysia)
*corresponding author

Abstract


Asymmetrical Digital Subscriber Line (ADSL) is the technology widely deployed worldwide, but its performance may be limited with respect to its intrinsic. The nature of the copper cable causes it to be more susceptible to signal degradation and faulty line. Common ADSL line faults are short-wired fault, open-wired fault, bridge taps, and uneven pair. However, ADSL technology is still one of the most established networks, and users in the suburban area still depend on the technology to access the internet service. This paper discussed and compared a machine learning algorithm based on Decision Trees (J48), K-Nearest Neighbor, Multi-level Perceptron, Naïve Bayes, Random Forest, and Sequential Minimal Optimization (SMO) for ADSL line impairment that affects the line operation performance concerning their percentage of accuracy. Resulting from classifications done using algorithms as mentioned above, the random forest algorithm gives the highest overall accuracy for the ADSL line impairment dataset. The best algorithm for classifying DSL line impairment is chosen based on the highest accuracy percentage. The accomplishment classification of fault type in the ADSL copper access network project may benefit the telecommunication network provider by remotely assessing the network condition rather than on-site.

Keywords


Digital Subscriber Line; Copper access network; WEKA; Cable Fault Classification; Machine Learning

   

DOI

https://doi.org/10.26555/ijain.v7i3.488
      

Article metrics

Abstract views : 983 | PDF views : 148

   

Cite

   

Full Text

Download

References


[1] T. Hendrickx, B. Cule, P. Meysman, S. Naulaerts, K. Laukens, and B. Goethals, “Mining Association Rules in Graphs Based on Frequent Cohesive Itemsets,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9078, no. 3, 2015, pp. 637–648. doi: 10.1007/978-3-319-18032-8_50.

[2] T. Bai, H. Zhang, J. Zhang, C. Xu, A. F. Al Rawi, and L. Hanzo, “Impulsive Noise Mitigation in Digital Subscriber Lines: The State-of-the-Art and Research Opportunities,” IEEE Commun. Mag., vol. 57, no. 5, pp. 145–151, May 2019. doi: 10.1109/MCOM.2019.1800858.

[3] T. Bai, H. Zhang, J. Zhang, C. Xu, A. F. Al Rawi, and L. Hanzo, “Impulsive Noise Mitigation in Digital Subscriber Lines: The State-of-the-Art and Research Opportunities,” IEEE Commun. Mag., vol. 57, no. 5, pp. 145–151, May 2019. doi: 10.1109/MCOM.2019.1800858.

[4] G. D. Ranasinghe, D. Yearling, M. Girolami, and A. K. Parlikad, “Using Expert Knowledge to Generate Data for Broadband Line Prognostics Under Limited Failure Data Availability,” IFAC-PapersOnLine, vol. 53, no. 3, pp. 265–270, 2020. doi: 10.1016/j.ifacol.2020.11.043.

[5] G.992.1 : Asymmetric digital subscriber line (ADSL) transceivers, E 17821, International Telecommunication Union (ITU), July 1999. [Online]. Available: https://www.itu.int/rec/T-REC-G.992.1-199907-I/en.

[6] D. Heath, "Chart of ADSL and ADSL2+ Speed Versus Distance | Increase Broadband Speed", Increase Broadband Speed | Tips to improve and speed up your broadband, 2019. [Online]. Available: https://www.increasebroadbandspeed.co.uk/2012/graph-ADSL-speed-versus-distance. [Accessed: 02- Oct- 2021].

[7] Z. Abdellaoui, Y. Dieudonne, and A. Aleya, “Design, implementation and evaluation of a Fiber To The Home (FTTH) access network based on a Giga Passive Optical Network GPON,” Array, vol. 10, no. March, p. 100058, Jul. 2021. doi: 10.1016/j.array.2021.100058.

[8] S. Neeraj, K. Sanjay, S. Manoj, and S. Atulkumar, “Introduction of Fiber To The Home Technology,” no. March, 2019. doi: 10.13140/RG.2.2.23634.20169.

[9] K. Featherly, “Digital Subscriber Line,” in Encyclopedia of New Media, vol. 1, no. 10, 2455 Teller Road, Thousand Oaks California 91320 United States: SAGE Publications, Inc., 2012, pp. 190–194.

[10] “Access Network Products Troubleshooting Guide (pdf) 01,” Huawei, 31-Oct-2018. [Online]. Available: https://support.huawei.com/enterprise/my/doc/EDOC1100047614/62a34014/pots-user-loop-line-test. [Accessed: 12-Feb-2020].

[11] M. S. Coutinho et al., “Machine learning-based system for fault detection on anchor rods of cable-stayed power transmission towers,” Electr. Power Syst. Res., vol. 194, p. 107106, 2021. doi: 10.1016/j.epsr.2021.107106.

[12] A. Soofi and A. Awan, “Classification Techniques in Machine Learning: Applications and Issues,” J. Basic Appl. Sci., vol. 13, pp. 459–465, Aug. 2017. doi: 10.6000/1927-5129.2017.13.76.

[13] K. Hameed, D. Chai, and A. Rassau, “Class distribution-aware adaptive margins and cluster embedding for classification of fruit and vegetables at supermarket self-checkouts,” Neurocomputing, vol. 461, pp. 292–309, 2021. doi: 10.1016/j.neucom.2021.07.040.

[14] Neelakantan . P, “Analyzing the best machine learning algorithm for plant disease classification,” Mater. Today Proc., 2021. doi: 10.1016/j.matpr.2021.07.358.

[15] E. Aker, M. L. Othman, V. Veerasamy, I. bin Aris, N. I. A. Wahab, and H. Hizam, “Fault Detection and Classification of Shunt Compensated Transmission Line Using Discrete Wavelet Transform and Naive Bayes Classifier,” Energies, vol. 13, no. 1, p. 243, Jan. 2020. doi: 10.3390/en13010243.

[16] Z. Noshad et al., “Fault Detection in Wireless Sensor Networks through the Random Forest Classifier,” Sensors, vol. 19, no. 7, p. 1568, Apr. 2019. doi: 10.3390/s19071568.

[17] I. N. Yulita, R. Rosadi, S. Purwani, and M. Suryani, “Multi-Layer Perceptron for Sleep Stage Classification,” J. Phys. Conf. Ser., vol. 1028, no. 1, p. 012212, Jun. 2018. doi: 10.1088/1742-6596/1028/1/012212.

[18] J. Adnan et al., “Heart abnormality activity detection using multilayer perceptron (MLP) network,” in AIP Conference Proceedings, 2018, vol. 2016, no. September, p. 020013. doi: 10.1063/1.5055415.

[19] M. A. Hafeez, M. Rashid, H. Tariq, Z. U. Abideen, S. S. Alotaibi, and M. H. Sinky, “Performance Improvement of Decision Tree: A Robust Classifier Using Tabu Search Algorithm,” Appl. Sci., vol. 11, no. 15, p. 6728, Jul. 2021. doi: 10.3390/app11156728.

[20] A. M. Ahmed, A. Rizaner, and A. H. Ulusoy, “A novel decision tree classification based on post-pruning with Bayes minimum risk,” PLoS One, vol. 13, no. 4, p. e0194168, Apr. 2018. doi: 10.1371/journal.pone.0194168.

[21] A. Chandra, A. Pani, P. K. Sahu, B. B. Majumdar, and S. Sharma, “Identifying large freight traffic generators and investigating the impacts on travel pattern: A decision tree approach for last-mile delivery management,” Res. Transp. Bus. Manag., p. 100695, 2021. doi: 10.1016/j.rtbm.2021.100695.

[22] A. Akhikpemelo, J. E. Evbogbai, and M. S. Okundamiya, “Fault Detection on a 132kV Transmission Line Using Artificial Neural Network,” Int. Rev. Electr. Eng., vol. 14, no. June, pp. 1–6, 2019. doi: 10.15866/iree.v14i3.17054.

[23] J. Abbineni and O. Thalluri, "Software Defect Detection Using Machine Learning Techniques," 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), 2018, pp. 471-475. doi: 10.1109/ICOEI.2018.8553830.

[24] H. TALABANI and E. AVCI, "Performance Comparison of SVM Kernel Types on Child Autism Disease Database," 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), 2018, pp. 1-5. doi: 10.1109/IDAP.2018.8620924.

[25] D. Merlini and M. Rossini, “Text categorization with WEKA: A survey,” Mach. Learn. with Appl., vol. 4, p. 100033, 2021. doi: https://doi.org/10.1016/j.mlwa.2021.100033.

[26] Valencia, R., 1999. Outside Plant Telephone Cable Testing & Fault Locating. [online] Multimedia.3m.com. Available at: http://multimedia.3m.com/mws/media/282728O/outside-plant-telephone-cable-testing-fault-locating.pdf [Accessed 12 March 2020].

[27] Rousselot, E. (n.d.). Guide to the Last Mile A Benchmark for VDSL Testing. [ebook] Pennsylvania: Megger Group Limited, p.1. Available at: https://cdn.thomasnet.com/ccp/00145012/54340.pdf [Accessed 4 Mar. 2020].

[28] P. Feng and L. Feng, “Sequence based prediction of pattern recognition receptors by using feature selection technique,” Int. J. Biol. Macromol., vol. 162, pp. 931–934, 2020. doi: 10.1016/j.ijbiomac.2020.06.234.

[29] D. Li, F. Huang, L. Yan, Z. Cao, J. Chen, and Z. Ye, “Landslide susceptibility prediction using particle-swarm-optimized multilayer perceptron: Comparisons with multilayer-perceptron-only, bp neural network, and information value models,” Appl. Sci., vol. 9, no. 18, p. 3664, 2019. doi: 0.3390/app9183664.

[30] H. Alla, L. Moumoun, and Y. Balouki, “A Multilayer Perceptron Neural Network with Selective-Data Training for Flight Arrival Delay Prediction,” Sci. Program., vol. 2021, pp. 1–12, Jun. 2021. doi: 10.1155/2021/5558918 .

[31] Ö. Karal, "Performance comparison of different kernel functions in SVM for different k value in k-fold cross-validation," 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), 2020, pp. 1-5. doi: 10.1109/ASYU50717.2020.9259880.

[32] L. Xiong and Y. Yao, “Study on an adaptive thermal comfort model with K-nearest-neighbors (KNN) algorithm,” Build. Environ., vol. 202, p. 108026, 2021, doi: 10.1016/j.buildenv.2021.108026.

[33] A. Nur, S. Syarifandi, and S. Amin, “Implementation of Text Mining Classification as a Model in the Conclusion of Tafsir Bil Ma ’ tsur and Bil RA ’ YI Contents,” Int. J. Eng. Adv. Technol., vol. 9, no. 1, pp. 2789–2795, 2019. doi: 10.35940/ijeat.A9780.109119.

[34] S. Jukic, M. Saracevic, A. Subasi, and J. Kevric, “Comparison of Ensemble Machine Learning Methods for Automated Classification of Focal and Non-Focal Epileptic EEG Signals,” Mathematics, vol. 8, no. 9, p. 1481, Sep. 2020. doi: 10.3390/math8091481.

[35] H. Sayadi, N. Patel, S. M. P.D., A. Sasan, S. Rafatirad and H. Homayoun, "Ensemble Learning for Effective Run-Time Hardware-Based Malware Detection: A Comprehensive Analysis and Classification," 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), 2018, pp. 1-6. doi: 10.1109/DAC.2018.8465828.

[36] R. Díaz-Uriarte and S. Alvarez de Andrés, “Gene selection and classification of microarray data using random forest.,” BMC Bioinformatics, vol. 7, p. 3, Jan. 2006. doi: 10.1186/1471-2105-7-3.

[37] K. U. Syaliman, E. B. Nababan, and O. S. Sitompul, “Improving the accuracy of k-nearest neighbor using local mean based and distance weight,” J. Phys. Conf. Ser., vol. 978, no. 1, p. 012047, Mar. 2018. doi: 10.1088/1742-6596/978/1/012047.

[38] Sovit Ranjan Rath, “An Introduction to k-Nearest Neighbors in Machine Learning,” Debugger Cafe, 2019. https://debuggercafe.com/an-introduction-to-k-nearest-neighbors-in-machine-learning/ (accessed Oct. 01, 2021).




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571  (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
   andri.pranolo.id@ieee.org (publication issues)

View IJAIN Stats

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0