Comparative analysis of classification techniques for leaves and land cover texture

(1) Azri Azrul Azmer Mail (Faculty of Computer Science & Information Technology, Universiti Tun Hussein Onn Malaysia, Malaysia)
(2) Norlida Hassan Mail (Faculty of Computer Science & Information Technology, Universiti Tun Hussein Onn Malaysia, Malaysia)
(3) Shihab Hamad Khaleefah Mail (Faculty of Computer Science, Al Maarif University College, Iraq)
(4) * Salama A Mostafa Mail (Faculty of Computer Science & Information Technology, Universiti Tun Hussein Onn Malaysia, Malaysia)
(5) Azizul Azhar Ramli Mail (Faculty of Computer Science & Information Technology, Universiti Tun Hussein Onn Malaysia, Malaysia)
*corresponding author

Abstract


The texture is the object’s appearance with different surfaces and sizes. It is mainly helpful for different applications, including object recognition, fingerprinting, and surface analysis. The goal of this research is to investigate the best classification models among the Naive Bayes (NB), Random Forest (DF), and k-Nearest Neighbor (k-NN) algorithms in performing texture classification. The algorithms classify the leaves and urban land cover of texture using several evaluation criteria. This research project aims to prove that the accuracy can be used on data of texture that have turned in a group of different types of data target based on the texture’s characteristic and find out which classification algorithm has better performance when analyzing texture patterns. The test results show that the NB algorithm has the best overall accuracy of 78.67% for the leaves dataset and 93.60% overall accuracy for the urban land cover dataset.

Keywords


Data mining; Texture analysis; Random forest; Naive bayes; k-Nearest neighbor

   

DOI

https://doi.org/10.26555/ijain.v7i3.706
      

Article metrics

Abstract views : 1132 | PDF views : 182

   

Cite

   

Full Text

Download

References


[1] P. Sunhare, R. R. Chowdhary, and M. K. Chattopadhyay, “Internet of things and data mining: An application oriented survey,” J. King Saud Univ. - Comput. Inf. Sci., Jul. 2020, doi: 10.1016/j.jksuci.2020.07.002.

[2] S. L. Goldenberg, G. Nir, and S. E. Salcudean, “A new era: artificial intelligence and machine learning in prostate cancer,” Nat. Rev. Urol., vol. 16, no. 7, pp. 391–403, Jul. 2019, doi: 10.1038/s41585-019-0193-3.

[3] S. H. Khaleefah, S. A. Mostafa, A. Mustapha, and M. F. Nasrudin, “The ideal effect of Gabor filters and Uniform Local Binary Pattern combinations on deformed scanned paper images,” J. King Saud Univ. - Comput. Inf. Sci., vol. 33, no. 10, pp. 1219–1230, Dec. 2021, doi: 10.1016/j.jksuci.2019.07.012.

[4] A. Tharwat, “Classification assessment methods,” Appl. Comput. Informatics, vol. ahead-of-p, no. ahead-of-print, Aug. 2020, doi: 10.1016/j.aci.2018.08.003.

[5] S. H. Khaleefah and M. F. Nasrudin, “Identification of printing paper based on texture using gabor filters and local binary patterns,” J. Theor. Appl. Inf. Technol., vol. 86, pp. 279–289, 2016. Available Semantic Scholar.

[6] H. Hartono and E. Ongko, “Hybrid approach redefinition with progressive boosting for class imbalance problem,” Sci. Inf. Technol. Lett., vol. 1, no. 1, pp. 40–51, Apr. 2020, doi: 10.31763/sitech.v1i1.34.

[7] N. Saravana Kumar, K. Hariprasath, N. Kaviyavarshini, and A. Kavinya, “A study on forecasting bigmart sales using optimized machine learning techniques,” Sci. Inf. Technol. Lett., vol. 1, no. 2, pp. 52–59, Nov. 2020, doi: 10.31763/sitech.v1i2.167.

[8] P. F. B. Silva, A. R. S. Marçal, and R. M. A. da Silva, “Evaluation of Features for Leaf Discrimination,” Kamel M., Campilho A. Image Anal. Recognition. ICIAR 2013. Lect. Notes Comput. Sci., pp. 197–204, 2013, doi: 10.1007/978-3-642-39094-4_23.

[9] H. Ait Issad, R. Aoudjit, and J. J. P. C. Rodrigues, “A comprehensive review of Data Mining techniques in smart agriculture,” Eng. Agric. Environ. Food, vol. 12, no. 4, pp. 511–525, Oct. 2019, doi: 10.1016/j.eaef.2019.11.003.

[10] R. Sahani, Shatabdinalini, C. Rout, J. Chandrakanta Badajena, A. K. Jena, and H. Das, “Classification of Intrusion Detection Using Data Mining Techniques,” Pattnaik P., Rautaray S., Das H., Nayak J. Prog. Comput. Anal. Networking. Adv. Intell. Syst. Comput. vol 710. Springer, Singapore., pp. 753–764, 2018, doi: 10.1007/978-981-10-7871-2_72.

[11] N. Tomasevic, N. Gvozdenovic, and S. Vranes, “An overview and comparison of supervised data mining techniques for student exam performance prediction,” Comput. Educ., vol. 143, p. 103676, Jan. 2020, doi: 10.1016/j.compedu.2019.103676.

[12] A. P. Gopi, R. N. S. Jyothi, V. L. Narayana, and K. S. Sandeep, “Classification of tweets data based on polarity using improved RBF kernel of SVM,” Int. J. Inf. Technol., Jan. 2020, doi: 10.1007/s41870-019-00409-4.

[13] S. A. Mostafa et al., “Examining multiple feature evaluation and classification methods for improving the diagnosis of Parkinson’s disease,” Cogn. Syst. Res., vol. 54, pp. 90–99, May 2019, doi: 10.1016/j.cogsys.2018.12.004.

[14] B. A. Johnson, “Mapping urban land cover using multi-scale and spatial autocorrelation information in high resolution imagery,” 2012. Available : Google Scholar.

[15] S. Mohan and K. Venkatachalapathy, “Wood Knot Classification using Bagging,” Int. J. Comput. Appl., vol. 51, no. 18, pp. 50–53, Aug. 2012, doi: 10.5120/8146-1937.

[16] S. A. Mostafa, A. Mustapha, M. A. Mohammed, M. S. Ahmad, and M. A. Mahmoud, “A fuzzy logic control in adjustable autonomy of a multi-agent system for an automated elderly movement monitoring application,” Int. J. Med. Inform., vol. 112, pp. 173–184, Apr. 2018, doi: 10.1016/j.ijmedinf.2018.02.001.

[17] M. Denil, D. Matheson, and N. De Freitas, “Narrowing the Gap: Random Forests In Theory and In Practice,” Proc. 31st Int. Conf. Mach. Learn., vol. 32, no. 1, pp. 665–673, 2014, [Online]. Available: https://proceedings.mlr.press/v32/denil14.html.

[18] G. T. P. Kumari, “A Study of Bagging and Boosting approaches to develop meta-classifier,” Eng. Sci. Technol. An Int. J., vol. 2, no. 5, pp. 850–855, 2012. Available: Semantic Scholar.

[19] J. Dou et al., “Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan,” Sci. Total Environ., vol. 662, pp. 332–346, Apr. 2019, doi: 10.1016/j.scitotenv.2019.01.221.

[20] T. Wang et al., “Random Forest-Bayesian Optimization for Product Quality Prediction With Large-Scale Dimensions in Process Industrial Cyber–Physical Systems,” IEEE Internet Things J., vol. 7, no. 9, pp. 8641–8653, Sep. 2020, doi: 10.1109/JIOT.2020.2992811.

[21] R. Pal, S. Kapali, and S. Trivedi, “A Study on Credit Scoring Models with different Feature Selection and Machine Learning Approaches,” SSRN Electron. J., 2020, doi: 10.2139/ssrn.3743552.

[22] S. Touzani, J. Granderson, and S. Fernandes, “Gradient boosting machine for modeling the energy consumption of commercial buildings,” Energy Build., vol. 158, pp. 1533–1543, Jan. 2018, doi: 10.1016/j.enbuild.2017.11.039.

[23] G. Meena and R. R. Choudhary, “A review paper on IDS classification using KDD 99 and NSL KDD dataset in WEKA,” in 2017 International Conference on Computer, Communications and Electronics (Comptelix), Jul. 2017, pp. 553–558, doi: 10.1109/COMPTELIX.2017.8004032.

[24] M. Swathy and K. Saruladha, “A comparative study of classification and prediction of Cardio-Vascular Diseases (CVD) using Machine Learning and Deep Learning techniques,” ICT Express, Sep. 2021, doi: 10.1016/j.icte.2021.08.021.

[25] A. Yasar, I. Saritas, M. A. Sahman, and A. O. Dundar, “Classification of Leaf Type Using Artificial Neural Networks,” Int. J. Intell. Syst. Appl. Eng., vol. 3, no. 4, p. 136, Dec. 2015, doi: 10.18201/ijisae.49279.

[26] A. Music and S. Gagula-Palalic, “Classification of Leaf Type Using Multilayer Perceptron, Naive Bayes and Support Vector Machine Classifiers,” Southeast Eur. J. Soft Comput., vol. 5, no. 2, Oct. 2016, doi: 10.21533/scjournal.v5i2.119.

[27] S. H. Khaleefah, M. F. Nasrudin, and S. A. Mostafa, “Fingerprinting of deformed paper images acquired by scanners,” 2015 IEEE Student Conf. Res. Dev., pp. 393–397, Dec. 2015, doi: 10.1109/SCORED.2015.7449363.

[28] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, “KNN Model-Based Approach in Classification,” Meersman R., Tari Z., Schmidt D.C. Move to Meaningful Internet Syst. 2003 CoopIS, DOA, ODBASE. OTM 2003. Lect. Notes Comput. Sci. vol 2888. Springer, Berlin, Heidelb., pp. 986–996, 2003, doi: 10.1007/978-3-540-39964-3_62.

[29] S. G. K. Patro and K. K. Sahu, “Normalization: A Preprocessing Stage,” Mar. 2015, [Online]. Available: http://arxiv.org/abs/1503.06462.

[30] S. Visa, B. Ramsay, A. L. Ralescu, and E. Van Der Knaap, “Confusion matrix-based feature selection.,” MAICS, vol. 710, pp. 120–127, 2011. Available: Google Scholar.

[31] S. A. Mostafa, A. Mustapha, S. H. Khaleefah, M. S. Ahmad, and M. A. Mohammed, “Evaluating the Performance of Three Classification Methods in Diagnosis of Parkinson’s Disease,” Ghazali R., Deris M., Nawi N., Abawajy J. Recent Adv. Soft Comput. Data Mining. SCDM 2018. Adv. Intell. Syst. Comput. vol 700. Springer, Cham, pp. 43–52, 2018, doi: 10.1007/978-3-319-72550-5_5.

[32] R. M. De Moraes and L. D. S. Machado, “Online Training Assessment in Virtual Reality Simulators Based on Gaussian Naive Bayes,” Comput. Intell. Decis. Control, pp. 1147–1152, Aug. 2008, doi: 10.1142/9789812799470_0188.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571  (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
   andri.pranolo.id@ieee.org (publication issues)

View IJAIN Stats

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0