AncDE with gaussian distribution for numerical optimization problem

(1) Siti Khadijah Mohd Salleh Mail (Universiti Teknikal Malaysia Melaka, Malaysia)
(2) * Siti Azirah Asmai Mail (Universiti Teknikal Malaysia Melaka, Malaysia)
(3) Zuraida Abal Abas Mail (Universiti Teknikal Malaysia Melaka, Malaysia)
(4) Abdul Samad Shibghatullah Mail (UCSI University Kuala Lumpur, Malaysia)
(5) Diarmuid O'Donoghue Mail (Maynooth University, Ireland)
*corresponding author

Abstract


This work is introducing an enhanced Differential Evolution (DE) called AncDE. This proposed algorithm is using an additional population from the current generation and located it as ancestor. There are two parameter controllers to manage the selection of ancestor vector; aup for selection frequency and arp for age of selection. In this work we were applying Gaussian distribution on aup and we tested it on CEC 2015 Numerical Optimization Problem. Standard Differential Evolution will act as the benchmark. The result shows that AncDE with Gaussian approach has produced better result than standard DE.

Keywords


Differential evolution; Ancestor vector; Gaussian distribution; Parameter controller

   

DOI

https://doi.org/10.26555/ijain.v5i1.258
      

Article metrics

Abstract views : 378 | PDF views : 82

   

Cite

   

Full Text

Download

References


[1] R. Storn and K. Price, “Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim., pp. 341–359, 1997, doi: 10.1023/A:1008202821328.

[2] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution algorithm with strategy adaptation for global numerical optimization,” IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 398–417, 2009, doi: 10.1109/TEVC.2008.927706.

[3] S. M. Elsayed and R. a. Sarker, “Differential Evolution with automatic population injection scheme for constrained problems,” Proc. 2013 IEEE Symp. Differ. Evol. SDE 2013 - 2013 IEEE Symp. Ser. Comput. Intell. SSCI 2013, pp. 112–118, 2013, doi: 10.1109/SDE.2013.6601450.

[4] G. Wu, R. Mallipeddi, P. N. Suganthan, R. Wang, and H. Chen, “Differential evolution with multi-population based ensemble of mutation strategies,” Inf. Sci. (Ny)., vol. 329, pp. 329–345, 2016, doi: 10.1016/j.ins.2015.09.009.

[5] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution with optional external archive,” IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 945–958, 2009, doi: 10.1109/TEVC.2009.2014613.

[6] R. Tanabe and A. Fukunaga, “Success-History Based Parameter Adaptation for Differential Evolution,” 2013 IEEE Congr. Evol. Comput. 71-78., no. 3, doi: 10.1109/CEC.2013.6557555.

[7] M. Z. Ali, N. H. Awad, and P. N. Suganthan, “Multi-population differential evolution with balanced ensemble of mutation strategies for large-scale global optimization,” Appl. Soft Comput. J., vol. 33, pp. 304–327, 2015, doi: 10.1016/j.asoc.2015.04.019.

[8] S. Das, S. S. Mullick, and P. N. Suganthan, “Recent advances in differential evolution – An updated survey,” Swarm Evol. Comput., vol. 27, pp. 1–30, 2016, doi: 10.1016/j.swevo.2016.01.004.

[9] M. Mernik, J. Brest, and V. Zumer, “Self-Adapting Control Parameters in Differential Evolution : A Comparative Study on Numerical Benchmark Problems,” IEEE Trans. Evol. Comput., vol. 10, no. 6, pp. 646–657, 2006, doi: 10.1109/TEVC.2006.872133.

[10] Y. N. Wang, L. H. Wu, and X. F. Yuan, “Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure,” Soft Comput., vol. 14, no. 3, pp. 193–209, 2010, doi: 10.1007/s00500-008-0394-9.

[11] Z. Yang and J. He, “Making a Difference to Differential Evolution,” Siarry P., Michalewicz Z. Adv. Metaheuristics Hard Optim. Nat. Comput. Ser. Springer, Berlin, Heidelb., no. 2007, doi: 10.1007/978-3-540-72960-0.

[12] G. Sun, Y. Lan, and R. Zhao, Differential evolution with Gaussian mutation and dynamic parameter adjustment, 2017, no. November, doi: 10.1007/s00500-017-2885-z.

[13] S. J. Lolle, J. L. Victor, J. M. Young, and R. E. Pruitt, “inheritance of extra-genomic information in Arabidopsis,” vol. 434, no. MARCH, pp. 505–509, 2005, doi: 10.1038/nature03363.1.

[14] A. FitzGerald and D. P. O’Donoghue, “Genetic repair for optimization under constraints inspired by Arabidopsis thaliana,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5199 LNCS, pp. 399–408, 2008, doi: 10.1007/978-3-540-87700-4_40.

[15] D. Hatton and D. P. O. Donoghue, “Arabidopsis thaliana Inspired Genetic Restoration Strategies,” Int. J. Biometrics Bioinforma., vol. 7, no. 1, pp. 35–48, 2013, available at: http://www.cscjournals.org/library/manuscriptinfo.php?mc=IJBB-209.

[16] R. Mallipeddi and P. Suganthan, “Empirical study on the effect of population size on differential evolution algorithm,” 2008 IEEE Congr. Evol. Comput. (CEC 2008), pp. 4–11, 2008, doi: 10.1109/CEC.2008.4631294.

[17] J. D. Knowles and D. W. Corne, “The Pareto Archived Evolution Strategy: A New Baseline Algorithm for Multiobjective Optimisation,” Proc. 1999 Congr. Evol. Comput., pp. 98–105, 1999, doi: 10.1109/CEC.1999.781913.

[18] K. Praditwong, X. Yao, and B. Birmingham, “A New Multi-objective Evolutionary Optimisation Algorithm Two Archive,” Comput. Intell. Secur. 2006 Int. Conf., vol. 1, pp. 286–291, 2006, doi: 10.1109/ICCIAS.2006.294139.

[19] B. Hu and G. Raidl, “An evolutionary algorithm with solution archives and bounding extension for the generalized minimum spanning tree problem,” GECCO’12 - Proc. 14th Int. Conf. Genet. Evol. Comput., pp. 393–400, 2012, doi: 10.1145/2330163.2330220.

[20] R. Sawant, D. Hatton, and D. P. O’Donoghue, “An ancestor based extension to Differential Evolution (AncDE) for Single-Objective Computationally Expensive Numerical Optimization,” in 2015 IEEE Congress on Evolutionary Computation, CEC 2015 - Proceedings, 2015, pp. 3228–3234, doi: 10.1109/CEC.2015.7257293.

[21] D. Hatton and D. P. O’Donoghue, “Explorations on template-directed genetic repair using ancient ancestors and other templates,” Proc. 13th Annu. Conf. companion Genet. Evol. Comput. - GECCO ’11, p. 325, 2011, doi: 10.1145/2001858.2002014.

[22] A. E. Eiben, Z. Michalewicz, M. Schoenauer, and J. E. Smith, “Parameter control in evolutionary algorithms,” Stud. Comput. Intell., vol. 54, no. 2, pp. 19–46, 2007, doi: 10.1007/978-3-540-69432-8_2.

[23] A. E. Eiben and M. C. Schut, “New Ways to Calibrate Evolutionary Algorithms”, Adv. Metaheuristics for Hard Optimization, pp. 153-177, 2007, doi: 10.1007/978-3-540-72960-0_8.

[24] T.-C. Chiang, C.-N. Chen, and Y.-C. Lin, “Parameter Control Mechanisms in Differential Evolution: A Tutorial Review and Taxonomy,” Proc. 2013 Ieee Symp. Differ. Evol., pp. 1–8, 2013, doi: 10.1109/SDE.2013.6601435.

[25] X. Qiu, J. X. Xu, K. C. Tan, and H. A. Abbass, “Adaptive Cross-Generation Differential Evolution Operators for Multiobjective Optimization,” IEEE Trans. Evol. Comput., vol. 20, no. 2, pp. 232–244, 2016, doi: 10.1109/TEVC.2015.2433672.

[26] J. Liu and J. Lampinen, “A Fuzzy Adaptive Differential Evolution Algorithm,” Soft Comput., vol. 9, no. 6, pp. 448–462, 2005, doi: 10.1007/s00500-004-0363-x.

[27] A. K. Qin and P. N. Suganthan, “Self-adaptive differential evolution algorithm for numerical optimization,” IEEE Congr. Evol. Comput., pp. 1785–1791, 2005, doi: 10.1109/CEC.2005.1554904.

[28] E. Mezura-Montes and A. G. Palomeque-Ortiz, “Parameter control in differential evolution for constrained optimization,” 2009 IEEE Congr. Evol. Comput. CEC 2009, no. 2, pp. 1375–1382, 2009, doi: 10.1109/CEC.2009.4983104.

[29] H. Lu, M. Yeh, and Y. Lu, “Gaussian Barebones Differential Evolution with Random-type Gaussian Mutation Strategy,” Univers. J. Control Autom., vol. 4, no. 2, pp. 18–22, 2016, doi: 10.13189/ujca.2016.040202.

[30] H. S. and M. G. H. O. H. Wang, S. Rahnamayan, “Gaussian Bare-Bones Differential Evolution,” IEEE Trans. Cybern. vol. 43, no. 2, pp. 634-647, April 2013., vol. 43, no. 2, p. 6479286, 2013, doi: 10.1109/TSMCB.2012.2213808.

[31] G. Su, “Gaussian process assisted DE algorithm for computationally expensive optimization problems,” 2008 IEEE Pacific-Asia Work. Comput. Intell. Ind. Appl. 2008 IEEE Pacific-Asia Work. Comput. Intell. Ind. Appl., 2008, doi: 10.1109/PACIIA.2008.184.

[32] S. K. Mohd Salleh, D. O. Donoghue, and A. S. Shibghatullah, “Varying Variants for Ancestor Differential Evolution with Magnitude Difference between Target and Trial Vector ( MDV ) Measurement,” Embrac. 4th Ind. Revolut. Innov. Telecommun. Electron. Comput. Eng. I, vol. 10 no 2-5, no. Mdv, 2016, available at: http://journal.utem.edu.my/index.php/jtec/article/view/4403.

[33] J. J. Liang, B. Y. Qu, P. N. Suganthan, and Q. Chen, “Problem Definitions and Evaluation Criteria for the CEC 2015 Competition on Learning-based Real-Parameter Single Objective Optimization,” Tech. Report201411A, Comput. Intell. Lab. Zhengzhou Univ. Zhengzhou China Tech. Report, Nanyang Technol. Univ. Singapore, no. November 2014, 2014, available at: https://al-roomi.org/.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571  (print) | 2548-3161 (online)
Organized by Informatics Department - Universitas Ahmad Dahlan , and UTM Big Data Centre - Universiti Teknologi Malaysia
Published by Universitas Ahmad Dahlan
W : http://ijain.org
E : info@ijain.org, andri.pranolo@tif.uad.ac.id (paper handling issues)
     ijain@uad.ac.id, andri.pranolo.id@ieee.org (publication issues)

View IJAIN Stats

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0